
ABSTRACT

Title of Thesis: A Framework for GPU 3D Model Reconstruction Using

Structure-from-Motion

Yu Wang, Master of Science, 2011

Thesis directed by: Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

A framework for three-dimensional (3D) model reconstruction is described in this the-

sis. The primary application is scanning forest canopies and assisting scientific applications

such as fire hazard evaluation and vegetation biomass estimation, using photos taken from a

radio-controlled helicopter, although the methods apply to any series of photographs taken

along a path. The approach is based on the fact that the photos are taken in a continuous

path, thus taking advantage of the adjacency between images. The major contributions of

this project are 1) introduce a linear time complexity algorithm that reduces number of im-

age pairs to match for datasets obtained in a continuous path 2) present an optimized high

performance framework for GPU 3D reconstruction using structure-from-motion.

A Framework for GPU 3D Model Reconstruction Using

Structure-from-Motion

by

YU WANG

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2011

c© Copyright Yu Wang 2011

Chapter 1

INTRODUCTION

High spatial resolution measurements of three-dimensional vegetation structure is

essential for accurate estimation of vegetation biomass, carbon accounting, forestry and

other scientific applications. These applications reconstruct a detailed 3D model from

photographs using structure-from-motion(SfM) algorithms and require large collections of

photographs. The process to generate the reconstructed geometry is expensive in terms of

instrument and labor cost, as well as processing time for the photo data set (Kampe et al.

2010). In order to obtain the datasets, researchers have been using aircraft installed with

high-resolution cameras and global positioning systems (Dandois & Ellis 2010), which are

usually constrained by weather, research budgets, flight schedules and require significant

human labor. Reconstruction algorithms match the images in the datasets to find common

points and use this information to compute the three-dimensional structure of the object

and the pose of the cameras that captured these images.

Researchers at the Geography and Environmental System Department, University of

Maryland, Baltimore County, designed a novel method of collecting scanning photographs

of local forest canopies for geometric reconstruction. They use radio controlled helicopters

with six propellers loaded with a commercial camera and navigate the area of interest,

taking photographs in a pre-designed path as in Figure 1.1. Point A is the starting point of

1

2

the path, PointB is the ending point of the scanning path and photos are taken continuously

as the helicopter flies by the area in path P . The green stars represent the location where

a photo is taken by the digital camera. This method, using a low-cost portable platform,

effectively reduces research budget and with the help of existing structure-from-motion

systems, we can get 3D reconstructions at a relatively low cost.

FIG. 1.1. Navigation path of the radio controlled helicopter

The open source software package Bundler (Snavely, Seitz, & Szeliski 2006) is a

structure-from-motion system for unordered image collections. It takes in a collection of

images, image features and image matches as input, and produces a 3D reconstruction of

camera and scene geometry as output. Bundler looks for the common features between

every pair of images in the collection and determines whether the two images have suf-

ficient features in common to contribute to the reconstruction of the 3D scene. The time

complexity of this pairwise comparison is O(n2), where n is the number of images in the

photo data set because no assumption about the image correlation is made. As a result, the

processing time for the Bundler system usually takes days or even weeks to finish the 3D

geometric reconstruction from a collection of a few hundred photos.

3

Under the assumption that the images are taken in a continuous path, we can effi-

ciently reduce the processing time of pairwise comparisons between every two images in

the photo set to comparisons between local groups of images that have features in common.

As a result, the proposed algorithm reduces the time complexity of the image processing

procedure, especially the pairwise image comparisons from every two images in the dataset

to only adjacent images.

The reconstruction process is decomposed into several stages (Snavely, Seitz, &

Szeliski 2006), which include feature extraction, feature matching, scene reconstruction

and camera position approximation. The original Bundler application was fully imple-

mented on the CPU. The ultimate goal would be to implement the framework on the GPU,

and this thesis project provides GPU solutions to the feature extraction and feature match-

ing stage of the framework.

By using the graphics processing units (GPU) in combination with NVIDIA’s compute

unified device architecture (CUDA), I developed parallel algorithms to perform image fea-

ture extraction and feature matching in parallel on hundreds of GPU cores. One more stage

is added to the reconstruction process in the framework after the geometry is reconstructed:

based on the reconstructed camera positions, for each camera, its nearest neighbor is lo-

cated using a GPU algorithm, so that we get the neighboring images of the image taken by

this camera, including ones from adjacent paths. This information is passed back to feature

matching stage and the scene is reconstructed using this information.

The high level work flow in the framework is: for each image in the given dataset, im-

age features are extracted using a GPU implementation by Wu (2011) of the SIFT algorithm

invented by David Lowe (2004), and the distinctive features in the images are extracted and

copied to the CPU; in the first feature matching stage, only adjacent images along the path

are matched, and SIFT features of each image are copied to the GPU memory and matched

using several CUDA kernels, then results are copied to the CPU; scene reconstruction is

4

performed using Bundler’s bundle adjustment routine, and positions of the cameras are

also approximated; in the next stage, k neighbors of each image are located and their in-

formation is sent to back to the feature matching and scene reconstruction routine to find

correspondences across paths and reduce path-to-path drift in the reconstruction.

The rest of the paper is organized as follows: Chapter 2 covers background and re-

lated work, Chapter 3 introduces the proposed framework, Chapter 4 presents the parallel

algorithms, Chapter 5 analyze the algorithm complexity and performance, and Chapter 6

concludes.

5

Chapter 2

BACKGROUND AND RELATED WORK

In this section, some existing applications for point cloud reconstruction and the fun-

damental theories adopted in these applications are introduced.

2.1 Point Cloud Reconstruction

Agarwal (2009) introduced a framework that efficiently arranges some stages of the

reconstruction process among compute nodes and calculates point clouds for famous land-

marks from 150K images downloaded from Flickr.com within a day on a cluster with

500 compute nodes. Although the job distribution provides speedup, it is limited by the

communication costs. Farenzena et al. (2009) described a partition algorithm that limits

the number of features in an image to use for feature matching in the initial approxima-

tion, and images are grouped into clusters based on the number of matched features. This

method reduces computation cost and the reconstruction drift, but at least 20 active views

are suggested to provide reliable and fast computing. PhotoSynth (Microsoft 2010) is an

application developed by Microsoft Live Labs and the University of Washington that ana-

lyzes unordered photo collections and generates a three-dimensional reconstruction of the

photos and a point cloud of a photographed object. Christopher Zach introduced a method

(Zach 2011) that reconstructs a 3D model in the form of sparse point clouds.

6

2.2 Scale-Invariant Feature Transform (SIFT)

A feature is a significant piece of information extracted from an image which provides

more detailed understanding of the image. For instance, an edge, a corner, a blob, or a point

of interest, etc. Feature detection is to identify the presence of a certain type of feature or

object in an image. Algorithms for image feature detection include Canny operator (1986)

and Sobel operator for edge detection; Harris operator for corner detection; Laplacian op-

erator for blob detection, etc. For local feature detection and description, David Lowe’s

SIFT (2004) algorithm is commonly applied by computer vision projects.

David Lowe (2004) proposed a method that applies Gaussian filters of different widths

to the input image, so that a sequence of filtered images are generated. By subtracting every

two consecutive blurred images, we get a stack of Difference of Gaussian-filtered images

(DoG, as shown in Figure 2.1). Local extrema are the invariant features of the image. Wu

(2011) implemented (Lowe 2004) using a GPU. The method processes pixels in parallel to

build Gaussian pyramids and detect DoG points.

2.3 Structure from Motion(SfM)

Photogrammetry studies modern multi-view geometry techniques, and the main prob-

lem is to determine the 3D location of a point in a scene from multiple photographs taken

from different vantage points. Using triangulation, any feature seen in at least two pho-

tographs taken from known locations can be localized in 3D. The triangulation method can

be described in terms of a function F such that

x ∼ F (y′1, y
′
2, C1, C2) (2.1)

7

FIG. 2.1. SIFT: difference of Gaussian

where y′1 and y′2 are the homogeneous coordinates of the detected image points and C1 and

C2 are the camera matrices, x is the homogeneous representation of the resulting 3D point.

Kruppa (1913) proved that for two views with five-point correspondences, the camera

poses and 3D point locations can be determined. Longuet (1981) introduced an algorithm

for computing the three-dimensional structure of a scene from a correlated pair of perspec-

tive projections, when the spatial relationship between the two projections is unknown.

2.4 Bundle Adjustment

Bundle adjustment (Triggs et al. 2000) solves the optimization of 3D coordinates that

describe the scene geometry, the parameters of the relative motion, and the optical char-

acteristics of the camera employed to acquire the images. It minimizes the re-projection

errors between predicted image points and the image locations which are achieved by using

nonlinear least-squares optimization. The problem we need to solve is represented in the

8

following equation:

min
x

1

2
‖F (x)‖2 (2.2)

Here, x is an n-dimensional vector of variables, representing n 3D feature points;

F(x) = [f1(x), f2(x), ..., fm(x)]
T , an m-dimensional function of x, representing the internal

calibration parameters of m cameras that take an image of the n feature points.

A typical solution to non-linear least squares problem is the Levenberg Marquardt

Algorithm (Nocedal & Wright 2000) as shown below:

min
4x

1

2
‖J(x)4x+ F (x)‖2 + µ ‖D(x) 4x‖2 (2.3)

Here, J(x) is the Jacobian of F (x), µ is a parameter that controls the strength of

regularization, and D(x) is a non-negative diagonal matrix, typically the square root of the

diagonal of the matrix J(x)TJ(x). At each iteration, a correction 4x is approximated to

vector x.

2.5 Faster SfM Methods

A common multi-image situation is that the images are taken in a particular sequence,

such as the frames of a video or images captured by a vehicle moving through a building.

We can match corresponding points between consecutive images using the basic five-point

algorithm to recover the poses of the first two frames and triangulate their common points,

then add the next frame, triangulate any new points, and repeat. This method works on

short sequences of video clips or photo sets, although the error of pose estimation would

accumulate as the size of the data set gets larger.

Another bottom-up solution (Fitzgibbon & Zisserman 1998) is to divide the sequence

9

of images or video frames into independent sub-sequences, and reconstruct these sub-

sequences independently and merge into progressively larger reconstructions.

Some methods based on bundle adjustment are designed for ordered image sequences

such as video clips, where some simplifying assumption can be made. One assumption is

that a newly added frame only affects several frames preceding this new frame. Previous

work has been done based on this simplifying assumption. Cornelis et al. (2006) based on

the assumption that the stereo-heads camera internals and relative pose are pre-calibrated,

introduced a local optimization method where a fixed-length feature track is reconstructed

when the number of images through which it was tracked exceeds a threshold. The length of

a feature track is limited to avoid memory congestion during SfM calculations. Pollefeys

et al. (2004) based their design on the assumption that a view is only matched with its

predecessor in the sequence, and presented a framework that does not require the camera

motion nor the camera settings as priori. Although it does not work well when the camera

moves back and forth. Once the structure and motion has been determined for the whole

sequence, the results can be refined through a projective bundle adjustment.

2.6 K-Nearest Neighbor Search Algorithm

Nearest neighbor search is a type of optimization problem for locating the closest

points to query points in metric spaces, formally: Given a set R of reference points in

space S and a query point q ∈ S, find the closest point in R to q. An extension of this

problem is locating the closest k neighbors of query point q in S based on their Euclidean

distances.

A naive solution, also known as the ”brute force” method, to the k-nearest neighbor

search is to compute the distance from the query point to every reference point and return

the closest k points. This method does not require space complexity besides the reference

10

points. Garcia et al. (2008) introduced a CUDA implementation of the brute force k-nearest

neighbor search algorithm (Figure 2.2) which parallelizes the computation of distances

between reference points and query points. In addition, insertion sort is used to collect the

first k candidates.

FIG. 2.2. k-nearest neighbors given a query point (k=5)

Local sensitive hashing (LSH) is a method that reduces dimensionality of high-

dimensional data by performing probabilistic reduction, and input data are hashed into

buckets based on their similarities. Vector approximation files (VA) compress feature vec-

tors and store them in the RAM for a pre-filter on the datasets and the final candidates are

determined in a second stage using uncompressed from the disk for distance calculation.

Another way to tackle the problem is space partitioning. Arya et al. (1998) proposed an

algorithm that builds a k-dimensional tree data structure based on a set of reference points,

and given a query point q, the approximate nearest neighbor or k-nearest neighbors are

reported. (Figure 2.3). Since there is a restriction on maximum points to consider in each

11

leave of the tree structure, the kd-tree returns the approximate neighbors.

FIG. 2.3. kd-tree data structure, when k=3

According to the research of similarity-search methods by the Bell Lab (Weber, Schek,

& Blott 1998), linear scan (brute force) method outperforms methods partitioning space

when the dimensionality of data exceeds 10. The feature descriptor of images defined

by Lowe’s SIFT method is 128 dimensional, which is more than 10, as a result, the the-

oretical performance of linear method shall be better than tree-structure methods in the

feature matching stage. On the other hand, for data with dimensionality of less than 10,

the tree-structure methods deliver better performance, thus applying a kd-tree in search-

ing for k-nearest neighbors of each camera who has three dimensional coordinates should

outperform the linear-scan method.

12

2.7 Image-Based Rendering

Image-based rendering (IBR) is a rendering technique that creates novel views of re-

alistic and synthetic objects using a limited number of images and geometric information.

There are three sub-categories in IBR: rendering with explicit geometries, implicit geome-

tries and no geometries.

Model consisting of explicit geometry information such as a set of images of a scene

and corresponding depth maps can be rendered from a nearby viewpoint by projecting the

pixels of the original image to its 3D coordinates, and re-projecting it onto a new picture

of a different point of view. For instance, McMillan et al. (1997) introduced 3D warping,

a technique that resolves occluding-artifacts by warping two images and compositing the

results.

Rendering techniques relying on no geometric information of objects are based on the

plenoptic function (Adelson & Bergen 1991) and its variants. A plenoptic function is a

seven-dimensional function describing the intensity distribution of a bundle of rays on the

pupil at any location (Vx, Vy, Vz) at every possible angle (θ, φ), for every wavelength λ, at

every time t, i.e.,

P7 = P (Vx, Vy, Vz, θ, φ, λ, t). (2.4)

As shown in Figure 2.4, by fixing the lighting condition (i.e. dropping the λ param-

eter), and introducing a static environment (i.e. dropping the time parameter), McMillan

and Bishop (1995) introduced the five-dimensional plenoptic function:

P5 = P (Vx, Vy, Vz, θ, φ). (2.5)

Light field (Levoy & Hanrahan 1996) and lumigraph (Gortler et al. 1996) systems re-

13

FIG. 2.4. The Five Dimensions of the Plenoptic Function

duce the five-dimensional plenoptic function to four dimensions by making an assumption

that the viewpoint stays outside the bounding box of an object:

P4 = P (u, v, s, t). (2.6)

So the coordinates on the u-v plane (u, v), and the coordinates on the s-t plane (s, t)

can be used to define the light ray (as shown in Figure 2.5).

Shum and He (1999) presented a three-parameter plenoptic function by rotating the

camera in concentric circles at varied radius from the rotating axis, so the plenoptic function

is determined by the rotation angle, radius and vertical elevation. Chen (1995) and Szeliski

and Shum (1997) took one step further: five of the seven parameters of the complete plenop-

tic function were dropped by fixing the viewpoint, i.e. Vx, Vy and Vz are dropped. So that

the adapted plenoptic function becomes two-dimensional, as shown below. In other words,

a regular image with limited field of view can be considered incomplete variant of the

14

FIG. 2.5. Defining the Light Ray Using u-v and s-t planes

plenoptic function with a fixed viewpoint.

P2 = P (θ, φ). (2.7)

15

Chapter 3

THE FRAMEWORK

My framework is designed for point cloud reconstruction from image datasets taken

from a fly-by remote-controlled helicopter. The obtained images are then sent to the frame-

work for processing to generate a point cloud representation of the area.

The reconstruction process is decomposed into several stages (Snavely, Seitz, &

Szeliski 2006), which include feature extraction, feature matching, scene reconstruction

and camera position approximation. Based on the scalability of each stage, parallel solu-

tions are designed using multi-core processors and Graphics Processing Units (GPU). Our

framework is presented in Figure 3.1.

In the feature extraction stage (Figure 3.1(a)), image features are extracted using an

existing GPU implementation (Wu 2011) of the SIFT algorithm (Lowe 2004) and written

back to the host. In the feature matching stage (Figure 3.1(b) and (e)), in order to reduce the

image pair comparisons, I introduce an algorithm that reduces the number of images to be

matched. For image data obtained in a continuous path with a camera pointed perpendicular

to the path, the presented algorithm limits the image correlation to nearby images. The next

stage is scene reconstruction and camera position approximation (Figure 3.1(c)). Then a k-

nearest neighbor search is performed (Figure 3.1(d)) on the approximated camera positions,

and based on the result of the search, for each image i a list of images that are close to i is

16

FIG. 3.1. Work flow in the framework: (a) Extract SIFT features; (b) Pairwise feature
matching (every consecutive three images); (c) Scene reconstruction and camera position
approximation; (d) Find k nearest neighbors of each camera position; (e) 2nd scene recon-
struction and camera position approximation; The difference between (b) and (e) is the
number of images to be compared: in (b) the number is the same for all the reference
images, and in (e) this number varies for different reference images.

17

passed back to the feature matching stage and matched one more time. From experiments

on a NVIDIA GeForce 9800 GT graphics card, the maximum number of consecutive image

features copied from the host to the device without causing external fragmentation is 50.

The next stage is performed twice (Figure 3.1(b) and (e)): in (b), the number of query

images is a flexible window size, whereas in (e), the number of query images for each

reference image is the same.

3.1 Pseudocode

The following is the pseudocode for the feature matching routine. The constant

16 in line 5 was experimentally determined by Snavely, Seitz and Szeliski (2006).

1: Decompress SIFT features for each image i

2: for every image i in the image list do

3: for each image j between image i− 1 and image 0 do

4: match two sets of key points of image i and image j

5: if number of matched key points is less than 16 then

6: break

7: else

8: record the matched key points

9: end if

10: end for

11: end for

18

3.2 Feature Decompression

After the features are extracted on the GPU, they are written back to the host as com-

pressed files. In order to continue our framework, these compressed features must be de-

compressed (line 1 in the pseudocode) and be passed to the GPU. The decompression is

performed on the CPU in parallel using a generic parallel algorithm, ”parallel-for”, from

the Intel Threading Building Blocks (TBB) (Int 2011). The decompression task on the

compressed features in the image list is distributed to parallel virtual threads by the TBB

task scheduler, as shown in Figure 3.2.

FIG. 3.2. TBB scheduler distributes each iteration of parallel-for to parallel threads

The feature decompression in Bundler (Snavely, Seitz, & Szeliski 2006) is linear, with

the compressed features for each image is operated on one by one. In our framework, the

TBB task scheduler assigns virtual threads to operate on a segment of the list of files.

19

In other words, with n parallel virtual threads and a list of N files, each virtual thread

decompresses the N/n files in parallel.

3.3 Camera Positions and Image Neighbors

After the features in the images are matched (line 2 through 11 in the pseudocode),

scene reconstruction and camera positions are approximated on the CPU (Figure 3.1(c)).

The camera positions and the corresponding images from which the cameras were approx-

imated are passed to the GPU and a k-nearest neighbor search algorithm is performed for

each camera. As shown in Figure 3.3.

FIG. 3.3. Refinement of Image Matching Base on Camera Positions

For instance, camera 10 and camera 15 in Figure 3.3: in stage (b), image 10 compares

to images 8, 9 and image 15 compares to images 12, 13, 14, and after stage (d), based on a

number of k neighbors (k = 5, for example) image 10’s neighbor list is updated to images

8, 9, 11, 12, 17; image 15’s neighbor list is updated to images 12, 13, 14, 16, 17. The

20

updated neighbor list for each image is sent to the image matching stage and processed

again through the framework.

3.4 Analysis of Time Complexity

In this section, I will analyze the time complexity of both image feature matching

stages (Figure 3.1(b) and (e)).

3.4.1 Feature Matching: First Time

The original application ((Snavely, Seitz, & Szeliski 2006)) was applied to datasets

of unordered images, so features of every two images in the dataset are matched, and the

pseudocode of the image feature matching is shown below:

1: for every image i in the image list do

2: for each image j between image 0 and image i do

3: match two sets of key points of image i and image j

4: if number of matched key points is less than 16 then

5: continue

6: else

7: record the matched key points

8: end if

9: end for

10: end for

Notice the second line of the code, where image i is matched with every other image in

the dataset. As a result, the time complexity of the image matching stage can be calculated

from the following equation:

21

1 + 2 + 3 + ...+ (N − 1) =
N ∗ (N − 1)

2
= O(N2) (3.1)

On the other hand, our algorithm for this stage of the framework is shown below:

1: for every image i in the image list do

2: for each image j between image i− 1 and image 0 do

3: match two sets of key points of image i and image j

4: if number of matched key points is less than 16 then

5: break

6: else

7: record the matched key points

8: end if

9: end for

10: end for

In line 4-5 of the pseudocode, the process is stopped by the first image j who has less

than 16 features matched to image i. As a result, in the worst case scenario, every image j

(0≤ j≤ i-1) has more than 16 matched features to every other image in the sequence i−1,

i− 2, i− 3, ..., 0, which add up to i images in total. So the theoretical time complexity of

this stage is calculated from the following equation:

1 + 2 + ...+N − 1 =
N ∗ (N − 1)

2
= O(N2) (3.2)

We claimed in the previous chapters that our algorithm for feature matching is a linear

algorithm, in that except for the taking off and landing area on the navigation path, the

helicopter moves along the path at a certain speed, and the field of view (FOV) of the

camera can be considered as a constant. For each position where a picture is taken, the

length of the path covered by the FOV of this camera is in the range (lmin, lmax), where

22

lmin and lmax are the minimum and maximum length along the navigation path covered by

the camera FOV. For a non-periodic path, such as images taken from a moving vehicle,

the length of the path (or the number of images along this path that have enough overlap

features) is a linear function with regard to the velocity of the moving vehicle; for a periodic

path, as the one shown in Figure 1.1, the claim still stands for consecutive images along

the path. For images from paths parallel to each other but have overlapping features, the

algorithm described in section 3.4.2 is a linear time complexity algorithm that solves this

problem.

3.4.2 Feature Matching: Second Time

In the fourth stage (Figure 3.1(d)) in the framework, based on the reconstructed camera

positions, the k-nearest neighbor search algorithm is applied to each camera, and its k

nearest neighbors are located, thus the images corresponding to the k camera parameters are

recorded. As a result, for each image i in the dataset, its k nearest neighbors are considered

to be the ones with enough overlap with i to contribute to the reconstruction. Here, the

number of neighboring images k should be determined by the density of the datasets. In

the experiments during the thesis project, an average of 10 neighbors for each image are

used to produce visually satisfactory results.

The feature matching stage is performed a second time, but with a knowledge that for

each image i in the dataset, only the k images we located based on the camera positions

should be matched. The pseudocode for this stage is the following:

1: for every image i in the image list do

2: for each image j in image i’s neighbor list do

3: match two sets of key points of image i and image j

4: if number of matched key points is less than 16 then

5: continue

23

6: else

7: record the matched key points

8: end if

9: end for

10: end for

In line 2 of the pseudocode, every image i is compared to its k neighbors, so the time

complexity for this stage is the following:

k + k + k + ...+ k = k ∗N = O(N) (3.3)

As a result, the time complexity of the feature matching stage remains linear.

24

Chapter 4

PARALLEL ALGORITHMS

In this chapter, the parallel algorithms included in the project are described in detail.

I will start with the concept of general-purpose computing on graphics processing units (or

GPGPU), NVIDIA’s Compute Unified Device Architecture (or CUDA), and then describe

the CUDA kernels and their thread distribution in the framework.

4.1 GPGPU and CUDA

4.1.1 General-Purpose Computing on GPUs

A basic graphics pipeline includes three stages: a user program on the CPU supplies

primitives (points, lines and polygons) in the form of 3D geometries, and each geometry

is identified by a collection of vertices, which are points with coordinates in space; and

every vertex in these 3D primitives is processed so that the primitives are transformed into

2D screen triangles; after that, every pixel in the 2D screen triangles is processed into a

fragment, which contains necessary data to generate a pixel to be drawn in the framebuffer,

where a frame of data would be displayed. OpenGL Shading Language (GLSL) provides

operators similar to the ones in the C programming language, and it can be used to im-

plement programs that execute in the graphics pipeline, so non-graphics related data can

be assembled as graphics primitives and passed through the graphics pipeline for general

25

purpose computations.

The traditional functionality of graphics processing units has been limited to acceler-

ate certain parts of the graphics pipeline. They are designed for solving computer graphics

problems, so the operations and programming methods are very restrictive. For exam-

ple, GPUs can only process independent vertices and fragments, but this process can be

performed in parallel on many vertices or fragments at the same time. Due to this charac-

teristic, GPUs can be considered as stream processors, which means one kernel, or function

executed on a GPU, can be executed on many data that require the same computation. It

emphasizes executing thousands of concurrent threads relatively slowly, rather than exe-

cuting a single thread quickly (like CPUs).

GPGPU is a technique of using a GPU to perform computation traditionally handled

by the CPUs. Additional programmable stages and higher precision arithmetic added to

the rendering pipeline allows programmers to use stream processing on non-graphics data

for general purpose computations.

4.1.2 Compute Unified Device Architecture (CUDA)

CUDA was introduced in 2007 by NVIDIA to give programmers access to the vir-

tual instruction set and memory of the parallel computational elements in CUDA-enabled

GPUs.

The CPU and its main memory are referred to as the host, and GPU and its memory

are referred to as the device. Basic CUDA processing flow includes four major steps: a)

Copy data from the main memory to GPU memory. b) a CUDA kernel is called on the

host which instructs the process on GPU. c) the GPU executes the kernel in parallel in each

core. d) Copy the result from device memory to the host memory.

The CUDA runtime launches kernels on a compute grid architecture, each of which

consists of parallel blocks, and each block comprises parallel threads.

26

Table 4.1. GPU Memory Type, Size, Speed, Sharing Scope and Lifetime
Memory Size Speed Sharing Scope Lifetime
register small Very fast thread kernel
local small Fast thread kernel
shared small Fast block kernel
global large Slow grid Application
constant small Fast grid (read only) Application

There are five categories of memory on the GPU: register, local memory, shared mem-

ory, global memory and constant memory. Table 4.1 shows the size, access speed, share

condition and lifetime for each type of memory. Registers and local memory are allocated

to each individual thread, they are fast but not visible to any other thread; shared mem-

ory are allocated to all the threads in the same block, it is fast to access, but has limited

size; global memory has large capacity but great latency to access; constant memory is for

storing read-only data, with high parallelism but low capacity.

Besides all these types of device memory, programmers are allowed to allocate part of

the global memory as texture memory if data access pattern has considerable spatial local-

ity. When consecutive threads access consecutive memory addresses, it is called coalesced

read, and its advantage is that we get the same speed up as the number of consecutive

threads when reading the consecutive memory over sequential read operations.

4.2 Work Flow in the Framework

There are five stages in the framework: SIFT feature extraction, image feature match-

ing, scene reconstruction, finding neighboring images based on the reconstructed camera

positions and repeat image feature matching and scene reconstruction. In the current frame-

work, SIFT feature extraction, image feature matching and finding neighboring images

stages are operated on the GPU whereas the scene reconstruction stage is performed on the

27

CPU (as shown in Figure 4.1).

FIG. 4.1. Stages in the Framework

4.3 Kernels and Threads Distributions

4.3.1 K-nearest neighbor search algorithm

The core implementation of k-nearest neighbor search algorithm is adopted from Gar-

cia et al. presented a CUDA implementation of the two-step brute force method (Garcia,

Debreuve, & Barlaud 2008): 1) Compute the distance between each reference point and

the query point; 2) Sort the distances and return the first k candidates.

Two kinds of GPU memory are used: global memory and texture memory. The global

memory has large bandwidth, but in order to achieve high performance, operations with co-

alesced access to the global memory should be performed in global memory, so the sorting

algorithm is implemented by accessing the global memory (coalesced read operations). On

28

the other hand, the computation of reference-query point distance is performed using the

texture memory because there are fewer penalties in the texture memory for non-coalesced

read operations.

After the search algorithm, the k nearest neighbors of each query point and the dis-

tance between the query point and its k nearest neighbors are returned.

4.3.2 Match Two Images

First we need to introduce some notations: fi1 is a feature (128 dimensional descriptor)

of image i, fj1 and fj2 are features of image j and the nearest neighbor and next nearest

neighbor of fi1, respectively; d1 is the Euclidean distance between fi1 and fj1, and d2 is the

Euclidean distance between fi1 and fj2.

The image feature matching stage takes in features of image i (reference points) and

image j (query points), locates the k-nearest neighbors of each query point among the

reference points and returns the results in an array as shown in Figure 4.2: since we need

only the nearest and the next nearest neighbor of each query point when matching two

images, the array consists of d1[0:n−1] and d2[0:n−1], where d1∗ is distance between query

point and its nearest neighbor in image i, d2∗ is the distance between query point and its

next nearest neighbor in image i, and n is the number of query points.

FIG. 4.2. Array of Distances to Nearest Neighbor and Next Nearest Neighbor

29

According to Lowe (2004), two features are considered as a match iff the equation 4.1

is true, where ratio is a number determined by experiments, and Snavely et al. (2006)

recommended 0.36.

d1∗
d2∗
≤ ratio (4.1)

A CUDA kernel is designed to perform this validation check on the ratio between d1∗

and d2∗ of every query point: if the equation 4.1 is true, a flag is turned on in an array of

flags that is located in the shared memory of each block. This kernel is launched by 512

threads/block, and 16 blocks/grid. The following is the pseudocode for this kernel:

1: declare a data structure cache in shared memory to store match information

2: assign thread id tid to a thread in current block

3: while tid < # query points do

4: if d1[tid]
d2[tid]

≤ ratio then

5: increment counter for matched query point

6: end if

7: increment tid of every thread in the grid to process data in the next grid

8: end while

9: thread tid updates corresponding entry in cache

10: synchronize threads in the same block

11: use a while-loop for a summation-reduction on cache

Line 8 in the pseudocode, every entry of cache in the shared memory is set up with

the number of matched features each thread found, then line 10, a summation-reduction is

performed on this data structure of entries. In Figure 4.3, one step of a summation reduction

is presented. After this reduction, the first entry in cache would be the number of matches

found by all the threads in one block, and cache is returned to the host for summation to

30

get total number of matches between the two images.

FIG. 4.3. Summation reduction on the cache in the shared memory

31

Chapter 5

RESULTS

This chapter presents the performance of the new framework.

5.1 Feature Extraction

Image features are extracted using a GPU implementation of the SIFT algorithm

(Lowe 2004) by Wu (2011), and the Figure 5.1 is the experiment result provided with

the implementation.

From Figure 5.1, the CUDA implementation provides better performance than other

implementations when the resolution of the image is low, i.e. 320*240; however, in our

framework, the feature extraction is performed by the GLSL implementation of the algo-

rithm because it can be applied to a wide range of image resolutions.

Table 5.1 shows the execution time of the feature extraction stage on several image

datasets with 1824*1368 resolution. The images we used are consecutive images from

the same dataset of 700 images: first 100, 200, 300 images, etc. Figure 5.2 is a plot of

the execution time for Bundler and the new framework: the execution time for feature

extraction stage in Bundler is between 2000 seconds and 11000 seconds, whereas the new

framework takes between 200 seconds and 2000 seconds.

Figure 5.3 shows the speedup of feature extraction on the datasets. The plotted line

32

FIG. 5.1. Speed chart for the GPU SIFT Implementation

Table 5.1. Execution Time on Feature Extraction (unit: HH:MM:SS)
images in the dataset Bundler Our Framework
100 images 00:30:37 00:04:31
200 images 01:01:55 00:09:28
300 images 01:28:15 00:13:48
400 images 01:55:30 00:18:07
700 images 03:31:39 00:33:00

33

FIG. 5.2. Execution Time of Feature Extraction Stage

34

is almost flat, because the execution time is determined merely by the number of images:

image features are extracted from one image at a time. In addition, the speedup of the GPU

solution is stable across multiple image datasets with varied number of images, although

the features are transfered between CPU and GPU, the communication cost is not affecting

the overall speedup.

FIG. 5.3. Speedup of Feature Extraction Stage

5.2 Feature Matching

We used images of 1824*1368 resolution during the experiments, and the execution

time for feature matching stage is shown in Table 5.2, and Figure 5.4(a), Figure 5.4(b) are

plots of the execution time of Bundler and the new framework respectively. The speedup

35

Table 5.2. Execution Time on Feature Matching (unit: HH:MM:SS)
images in the dataset Bundler Our Framework
100 images 2:59:22 00:02:40
200 images 11:02:38 00:06:34
300 images 22:16:23 00:09:41
400 images 36:42:26 00:14:08

of our design against Bundler’s feature matching stage is shown in Figure 5.4.

From Figure 5.4, the speedup of the feature matching stage of our framework over

Bundler increases as the number of images in the dataset increases, in that Bundler matches

features of every two images in the datasets, whereas flexible window size algorithm takes

advantage of the fact that only limited images in a sequence are needed for matching to one

image. So the execution time of the new framework in feature matching stage is a linear

function about the number of images in the dataset, while the execution time of Bundler

in feature matching stage is a function about the square of the number of images, which is

why the speedup increases as the number of images increases.

5.3 Scene Reconstruction and Camera Position Approximation

We kept the bundle adjustment algorithm on the scene reconstruction and camera ap-

proximation from Bundler (Snavely, Seitz, & Szeliski 2006), but since we are using a

different nearest neighbor search algorithm in the feature matching stage, i.e. linear scan or

brute force method. The matched features are different from those we get from the feature

matching stage of Bundler. According to the reconstructed point cloud from both applica-

tions, our framework delivers better visual correctness. Figure 5.5(a) is the side view of a

reconstructed point cloud from 400 image dataset, and Figure 5.5(b) shows the side view

of the point cloud by Bundler from the same dataset. From Figure 5.5(a) and Figure 5.5(b),

we find that the structure in our point cloud is visually correct, since no feature points are

36

(a) Execution Time of Feature Matching Stage: Bundler (unit: 104 seconds)

(b) Execution Time of Feature Matching Stage: New Framework

37

FIG. 5.4. Speedup of the feature matching stage

38

placed below the horizon, whereas the point cloud generated by Bundler has a large number

of points placed below the horizon. This incorrect reconstruction is the main reason that

Bundler’s execution takes extremely long since it takes more iterations for the non-linear

least square optimization to converge.

(a) Side view of point cloud generated by our framework

(b) Side view of point cloud generated by Bundler

Table 5.3 shows the execution time on scene reconstruction stage. Figure 5.5 is a plot

showing the execution time of Bundler and the new framework.

In Figure 5.6, the speedup of this stage decreases as the number of images in the

datasets increases. The reason for this result is that the scene reconstruction process is not

39

Table 5.3. Execution Time on Scene Reconstruction (unit: HH:MM:SS)
images in the dataset Bundler Our Framework
100 images 01:37:46 00:02:14
200 images 07:05:03 00:11:28
300 images 09:22:03 01:06:59
400 images 27:04:50 04:03:28

FIG. 5.5. Execution time for Scene Reconstruction

40

optimized, and as both our framework and Bundler are reconstructing the scene using CPU

implementation of the optimization algorithms.

FIG. 5.6. Speedup of the scene reconstruction stage

5.4 Overall Speedup

Table 5.4 presents the overall speedup of the parallel framework over the Bundler

application.

5.5 More Reconstructions

In this section, the accumulation of reconstructed points of the same forest site is

presented in the Figure 5.5 and Figure 5.5.

41

Table 5.4. Speedup over Bundler
images in the dataset Speedup
100 images 32.68
200 images 41.80
300 images 21.96
400 images 14.30

FIG. 5.7. Reconstruction accumulation: first half

42

FIG. 5.8. Reconstruction accumulation: second half

Chapter 6

QUALITY EVALUATION

In this section, a method is proposed to evaluate the quality of the reconstructed point

clouds, i.e. difference between the camera positions recovered by both Bundler and by the

new framework.

6.1 Reconstructed Camera Positions

Given two points in space, V1 (v1x, v1y, v1z) and V2 (v2x, v2y, v2z), the Euclidean

distance between V1 and V2 is:

√
(v1x − v2x)2 + (v1y − v2y)2 + (v1z − v2z)2 (6.1)

The image datasets are obtained with the cameras pointing at the area of interest, per-

pendicular to the path. Therefore, the quality of recovered cameras positions can be con-

sidered as one aspect of the evaluation metric. We will be considering cameras recovered

by both Bundler and the new framework and evaluate the differences between the positions

of the cameras in space using the Root-Mean-Square (RMS) method.

For two cameras recovered using the same photograph by both Bundler and the new

framework, Ck (xk, yk, zk) and C ′k (x′k, y′k, z′k), the vector
−−−→
CkC

′
k is the difference be-

tween the two recovered cameras. Projecting
−−−→
CkC

′
k along −−−−−−→Ck−1Ck+1 and perpendicular to

43

44
−−−−−−→
Ck−1Ck+1, and measuring the length of both vectors, we get the difference of camera posi-

tions recovered from the same photographs by two methods along the navigation path and

perpendicular to the path.

FIG. 6.1. Illustration of difference measurment

Figure 6.2, 6.3 and 6.4 show the differences between recovered camera positions along

the path and perpendicular to the path when processing four datasets each with one hundred

photos.

45

FIG. 6.2. Difference along and perpendicular to the path on a one-hundred-image dataset 1

FIG. 6.3. Difference along and perpendicular to the path on a one-hundred-image dataset 2

46

FIG. 6.4. Difference along and perpendicular to the path on a one-hundred-image dataset 3

47

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis project, I designed parallel solutions for the structure-from-motion ap-

plication, Bundler (Snavely, Seitz, & Szeliski 2006). Based on the different parallelism of

each stage, both CPU and GPU solutions are applied to the framework. According to the

experiment results, the performance of all the stages are significantly improved.

The framework in this thesis project performs SIFT feature extraction and image fea-

ture matching on the GPU, but not scene reconstruction. The scene reconstruction stage

uses bundle adjustment, a non-linear least squares optimization algorithm. One item for

future work is to implement this stages on the GPU as well.

In the current framework, data are repeatedly copied between the GPU and CPU mem-

ory, which causes certain data transfer overhead. For example, image features are copied

back to the CPU after SIFT features are extracted, and later the same features are copied

back to the GPU in the feature matching stage. Although our framework delivers good

performance in the experiments, this repeating copy operation might cause external frag-

mentation on the GPU memory and incur a data transfer performance cost. As a result, an

important future work would be porting all the stages onto the GPU without repeating data

transfer between the CPU and GPU. In other words, for an image dataset, image features

should be stored in the global memory of the GPU after feature extraction stage for all the

48

parallel threads from all the blocks to access in later stages.

In addition, the resolution of the image dataset I used in the project is 1824*1368, and

more experiments are needed to determine the optimal image resolution in the dataset. We

expect this optimal size to be smaller than the current images. Smaller image sizes would

allow colleagues at the geography department collect more images at lower resolution on

a storage card in the digital camera during one RC-helicopter fly mission. Also, smaller

images would decrease the data processing time, and allow more images to fit into GPU

memory, reducing the need to page data from the CPU to GPU.

REFERENCES

[1] Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elements of

early vision. In Landy, M. S., and Movshon, A. J., eds., Computational Models of Visual

Processing. Cambridge, MA: MIT Press. 3–20.

[2] Agarwal, S.; Furukawa, Y.; Snavely, N.; Curless, B.; Seitz, S. M.; and Szeliski, R.

2009. Building rome in a day.

[3] Arya, S.; Mount, D. M.; Netanyahu, N. S.; Silverman, R.; and Wu, A. Y. 1998. An

optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM

45(33):891–923.

[4] Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. 8:679–698.

[5] Chen, S. E. 1995. Quicktime vr: an image-based approach to virtual environment

navigation. In Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’95, 29–38. New York, NY, USA: ACM.

[6] Cornelis, N.; Cornelis, K.; and Gool, L. V. 2006. Fast compact city modeling for nav-

igation pre-visualization. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-

nition, 1339–1344.

[7] Dandois, J. P., and Ellis, E. C. 2010. Remote sensing of vegetation structure using

computer vision. Remote Sensing.

[8] Farenzena, M.; Fusiello, A.; and Gherardi, R. 2009. Structure-and-motion pipeline on

a hierarchical cluster tree.

49

50

[9] Fitzgibbon, A. W., and Zisserman, A. 1998. Automatic camera recovery for closed or

open image sequences. In Proc. European Conf. on Computer Vision, 311–326.

[10] Garcia, V.; Debreuve, E.; and Barlaud, M. 2008. Fast k nearest neighbor search using

gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE

Computer Society Conference on, 1–6.

[11] Gortler, S. J.; Grzeszczuk, R.; Szeliski, R.; and Cohen, M. F. 1996. The lumigraph.

In Proc. SIGGRAPH, 43–54.

[12] 2011. Intel threading building blocks http://threadingbuildingblocks.org/.

[13] Kampe, T. U.; Johnson, B. R.; Kuester, M.; and Keller, M. 2010. Neon: the

first continental-scale ecological observatory with airborne remote sensing of vegetation

canopy biochemistry and structure. In Journal of Applied Remote Sensing, volume 2.

[14] Kruppa, E. 1913. Zur ermittlung eines objektes aus zwei perspektiven mit innerer

orientierung.

[15] Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Proc. SIGGRAPH,

31–42.

[16] Longuet-Hinggins, H. 1981. A computer algorithm for reconstructing a scene from

two projections. Nature 293:133–135.

[17] Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision.

[18] McMillan, L., and Bishop, G. 1995. Plenoptic modeling: An image-based rendering

system. In Proc. SIGGRAPH, 39–46.

51

[19] McMillan, L.; Jr.; and Pizer, R. S. 1997. An image-based approach to three-

dimensional computer graphics. Technical report.

[20] Microsoft. 2010.

[21] Nocedal, J., and Wright, S. 2000. Numerical Optimization. Springer.

[22] Pollefeys, M.; van Gool, L.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; and

Koch, R. 2004. Visual modeling with a hand-held camera. In Int. J. of Computer Vision,

volume 59(3), 207–232.

[23] Shum, H.-Y., and He, L.-W. 1999. Rendering with concentric mosaics. In Proceed-

ings of the 26th annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’99, 299–306. New York, NY, USA: ACM Press/Addison-Wesley Publish-

ing Co.

[24] Snavely, N.; Seitz, S. M.; and Szeliski, R. 2006. Photo tourism: Exploring image

collections in 3d. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006).

[25] Szeliski, R., and Shum, H.-Y. 1997. Creating full view panoramic image mosaics and

environment maps.

[26] Triggs, B.; McLauchlan, P. F.; Hartley, R. I.; and Fitzgibbon, A. W. 2000. Bundle

adjustment - a modern synthesis. In Proceedings of the International Workshop on

Vision Algorithms: Theory and Practice, number 75 in ICCV ’99, 298–372. London,

UK: Springer-Verlag.

[27] Weber, R.; Schek, H.-J.; and Blott, S. 1998. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In Proceedings of the

24rd International Conference on Very Large Data Bases, VLDB ’98, 194–205. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

52

[28] Wu, C. 2011. SiftGPU: A GPU implementation of scale invariant feature transform

(SIFT). http://cs.unc.edu/ ccwu/siftgpu, April 6, 2011.

[29] Zach, C. 2011. Structure-and-motion (sfm) software.

