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ABSTRACT

Title of Thesis: GPU Random Walkers for Iterative Image Segmentation
Sean Peter Dukehart, M.S. in Computer Science, 2009

Thesisdirected by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Image segmentation is the act of partitioning an image irgbritt regions based on
properties that the pixels in those regions share, suchh@gdunce, texture, or color. Image
segmentation finds application in fields ranging from mddrmaging to computer vision,
all of which require the ability to distinguish contiguolegions. Based on user-specified
foreground and background “seed” pixels, the random walgkegmentation algorithm cal-
culates probabilities for pixel-placed random walkers kiray” across additional pixels
that they are connected to and arriving at one of the seeds.piidbability is calculated
based on the variance of the shared property.

This thesis presents an algorithm to expand the usefulrfieasdom walkers that pro-
vides the ability for interactive image segmentation arftheenent. This approach mini-
mizes delays in visual feedback during segmentation throlig use of iterative processes.
Starting with lower convergence thresholds leads to lowdral probabilities with less
definitive segmentations. As more seed points are added arelimknown about the de-
sired segmentation, the system maintains interactivityugher refinements through dy-
namic convergence thresholding. To aid in this computatlgnntensive process, highly
parallel graphics processing units are employed. The im@igation is developed as an
Adobe® Photoshop plug-in to enable comparison with other currently avaiaishage

segmentation techniques.
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Chapter 1

INTRODUCTION

Segmentation is the process of identifying different psemegroupings of similar in-
formation from a larger collection of information. The pleim of segmentation appears in
a number of contexts—for example, volume segmentationtfectors the ability to ex-
tract a model of an individual’'s aorta or other internal stawes from cardiac CT (computed
tomography) volume data (Sherbondy, Houston, & Napel 2008 video segmentation,
it is possible to track objects through several frames armace these objects into a new
scene (Wangt al. 2005). Although segmentation problems arise in many fi¢kasfocus
of this paper is on the application of segmentation to imggWith the advent of digital
cameras, high-resolution scanners, and a multitude of diggal imaging input devices,
the challenge has arisen of what to do with the images thgtgraduce and the informa-
tion that these images contain. It has become increasingdpitant to develop tools and

processes for extracting this information.

1.1 Image Segmentation

In controlled situations such as video chroma keying, ekitng the foreground region
from a uniformly colored background is straightforwardg$ggure 1.1). It is feasible to

require a uniform background behind a television weathehan but many segmentation



= 3

(a) Green Screen (b) Segmentation

(c) Newly Composited Scene

FiG. 1.1. An example of the compositing made possible by segatient Weather anchors
can stand in front of a green-screen background, and havwenife@m colored screen ma-
nipulated in image / video space as if it were a completehassp entity. This process,
known as “chroma keying,” enables weather maps to be disdlé#ghind them as if the
anchor were standing in front of what is actually a separetes.



(a) Montage Segments (b) Final Composite

FIG. 1.2. Using Interactive Digital Photomontage segmentadiod restoration to create
a final composite image from multiple sub-images, where éadividual color overlay
indicates the sub-image that a segmented region came frganf/alaet al. 2004)

situations are not so flexible. For instance, a tumor or causeregion in a medical image
is in many ways similar to the surrounding non-cancerou®nesy The problem of breaking
the underlying image into more meaningful parts based ort wbald be defined as objects
and boundaries is exceedingly challenging. Difficultiedude noise, similarity of texture
between objects, semi-transparent foreground objects asibair, and under-constrained
problem specifications. The ultimate goal is to overcomeehdifficulties and to glean
guantifiable information from images through tiheage segmentatigorocess.

Image segmentation is used in fields ranging from face anerfommt detection, to
advertising, to machine vision. As can be seen in Figureitltas been used in composi-
tion, enabling a single image to be created from a montagkgofead images. This process
permits desired parts of multiple images to be combinedarfinal composite that shows

an “ideal” scene. Image segmentation and volume segmentate more commonly used



4
in the medical field, permitting object boundaries in x-rayscans to be distinguished that

would otherwise be extremely difficult to differentiate.

1.2 Technology

In 1965, “Moore’s Law” (Moore 1965; Moore 1975) predictedauling of the num-
ber of transistors in electronic components every two yearsncrease that has continued
through the present day. However, the maximum throughputadern-day CPUs has
met a number of bottlenecks, so that performance no longekgrwith the exponential
growth in transistor count. As more transistors are addealgmaller and smaller space,
interconnections and power consumption limit how quickéyprocessors can perform.
As a result, processor manufacturers have moved to muiiqarallel computing (Intel
2005). The notion is that if tasks can be broken down into lfgrparts, more can be
done in the same span of time, thus increasing throughpualéomeing for improved per-
formance. This observation has resulted in dual and quadmocessors from the major
CPU manufacturers trying to leverage the opportunitiesgheallelization affords.

Although CPUs have seen a great deal of improvement fronptmiallelization, to-
day’s GPUs (Graphics Processing Units) found in consueatlideo cards already have
inherent parallel computing pathways built in. Since a bregpcard’s purpose is to rapidly
generate display information, it is designed for sendingraen’s worth of pixel informa-
tion to the monitor 30 or more times per second. The apprdaahGPUs have taken is
to employ parallel pathways for the generation of pixel inrfation. This has resulted in
a significant increase in the amount of processing that camobe concurrently. When
processes utilize the available parallelism of the pramesertain classes of problem gain
huge increases in performance.

Comparing the 51.2 peak Gigaflops of Intel'surrent top-of-the-line 3.2 GHz
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QX9775 Cor&" 2 Extreme CPU (Intel 2008) to the 230.4 peak Gigaflops of tlyed&-
old NVIDIA ® GeForce 8800 GTS GPU used for this thesis (Charpentier 2007), ieiarcl
that in terms of floating point throughput, the GPU comes batwinner. With current
GPUs breaking the Teraflop barrier (AMD 2008b), as well ag thervasive use of more
and more silicon (upwards of 1.4 billion transistors (NVAO2008b)), the power and per-
formance of the modern-day GPU will continue to be a majolirgglpoint for moving

away from the CPU and into the much more parallel world of GBbguting.

1.3 Problem Area

As technology advances and processing power increases, itha necessity to de-
velop algorithms that were previously not feasible due taWware restrictions. Today’s
most accurate single-image segmentation algorithms arsltov for true interactive use
(Boykov & Kolmogorov 2003; Agarwalat al. 2004; Grady 2006). Other algorithms are
designed for interactivity, but give lower-quality resuiMortensen & Barrett 1995). There
is a gap between speed and accuracy-motivated solutioree teegmentation problem.
With hardware continually becoming less of a restrictionvttat algorithms are possible,

new approaches to interactive single-image segmentatairfill this gap are possible.

1.4 Contributions

The GPU-based random walkers segmentation method presienthis thesis, or
GPURW as it will be referred to herein, extends the random walkerage segmenta-
tion algorithm (Grady & Funka-Lea 2004) (the standard atbar is discussed in Section
2.2). GPURW is an interactive segmentation algorithm fogkd images that allows fore-
ground / background objects for a given image to be diststyrd. It presents a parallel

solution for filling the speed-accuracy gap, providing agoathm that is both fast and ac-
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curate. Other systems have sought to produce high-quasityts after initial segmentation
or at each user interaction point, but are based on minimalvledge of a user’s desire.
This can lead to results that fail to match what the user dgtwaanted. The GPURW
approach uses accumulated accuracy; as the system lear@sbwat a user’s intentions,
the segmentation will more closely match their target segatmn.

GPURW is implemented using NVIDIKA CUDA™ (Compute Unified Device Archi-
tecture) technology for doing general-purpose processimthe highly parallel graphics
processing unit, also known & GPU (General Purpose Graphics Processing Unit) com-
puting. The algorithm is incorporated into an AdebEBhotoshop plug-in to present a
standard testbed for comparison with other current saistto the image segmentation
problem.

The GPURW algorithm produces segmentations that equag thiohe standard ran-
dom walkers algorithm; the distinctions are that GPURW dse@teractively, and does
not require being run to the standard algorithm’s level afvesgence. It provides imme-
diate visual feedback on the current segmentation, prodsggmentations in comparable
time to other Photoshop segmentation plug-ins. The regiggmentations are as good or

better than those produced by other binary (object / notobpgegmentation methods.

1.5 Organization

Chapter 2 examines image segmentation approaches andhtatggrin particular the
random walkers image segmentation algorithm, and predbkatselevance of graphics
hardware to the GPURW algorithm. Chapter 3 describes hosvghiticular approach
to image segmentation was designed and implemented. Chlptesents the results and
considerations. Finally, Chapter 5 discusses limitatiointhe approach, examines areas

that might be fruitful for future work, and presents conans.



Chapter 2

BACKGROUND AND RELATED WORK

This chapter describes technical concepts that must basiodd for the remainder
of the thesis. Prior work in the field of image segmentatiatissussed, and the technology

needed for the implementation outlined in Chapter 3 is priesk

2.1 Image Segmentation Overview

Image segmentatias the decomposition of an image into meaningful parts. Ssgm
tation can be expressed as a selection, a definitive exdimar a matting of some part of
an image. The number of possible segmentations of-pixeled image intd < m <n
distinct labellings isn™. With such an immense number of possible ways to partitien th
image, the question becomes how to identify the “right” iiarts that present the desired
meaning. Since meanings are generally perceptual in n@tuaeperson’s clothing part of
the person? Is a license plate defined by the outline of the plaby the letters and num-
bers?), itis increasingly important to recognize thatehsmnot generally a single “correct”
partition. Rather, the task is to partition the image in® st approximation of the user’s
desired meaning.

Falcao et al. (1998) indicated that a segmentation musepeatable, accurate and

efficient. Grady (2006) extended this assertion by indiggtihat for an image segmentation



algorithm to be a practical solution, the following mustdhtiue:

1. It must be fast to compute.

N

. It must allow for fast editing.

w

. It must produce intuitive segmentations.
4. There must be the ability to produce arbitrary segmenntativith enough interaction.

Although the definition ofast can be debated, the general premise was that a user of an
image segmentation algorithm should not have to provid@alnnput for a segmentation
and then return days later to see a result. Since they couddihizzracted with the algorithm
incorrectly or unintentionally, there must be relativatymediate indications of the results
of their action so that refinements can be made.

There are three generally accepted classes of segmentatamual, automatic and
semi-automatic. The manual pathway requires complete ingelvement; that is, the
only parts of the image to be selected for segmentation asetthat the user has directly
chosen. Examples of this approach include individual paxedxplicit region selection, as
can be seen in the rectangular, elliptical, or other shased selection and free selection
tools found in nearly every image-editing suite. Automaipproaches exist but are nearly
always specialized to handle a very specific type of objexth @s license plates (Acosta
2004) or classes of objects learned from previous useractiens (Lee & Street 2000).

In contrast, semi-automatic approaches involve varyinguats of user interaction.
The first class of semi-automatic segmentation approa&hesyn asseed-basedegmen-
tation, requires points to be specified as either inside tside the boundaries of objects
(Boykov & Jolly 2001; Lombaeret al. 2005; Grady 2006). A second class of methods
deals with explicitly indicating object boundaries, ang@netimes referred to &und-

ary tracing (Mortensen & Barrett 1995; Wang, Agrawala, & Cohen 2007)erghis also
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a third approach, which involves indicating a bounding ghapund an object (Rother,
Kolmogorov, & Blake 2004). This approach inherits from bsted-based and boundary
tracing methods. These semi-automatic approaches enssmparly all recent work in

image segmentation.

2.1.1 Magic Wand / Fuzzy Selection

Both Adobe Photoshop®agic Wand(Adobe 2008) and GIMP’sFuzzy Selection
(GIMP 2008) tools can be thought of as color similarity todlfiey can be likened to the
region-growing methodologies of Haralick (1985), whichrevbased on pixel intensities.
A user clicks on a starting pixel in the image and nearby gixéth colors similar to the
starting point are selected. This seed-based approachesrsdgmenting an image into
regions of similar color that can be (but are not requireddpdontiguous. Thus, either
solid objects or spans of like color across an image can leeteel.

One of the key elements to this style of segmenter is the uaé¢twéshold or tolerance
that dictates how close similar pixels must be to the spek#tarting pixel in order to be
included in the segmentation (see Figure 2.1). As this tomdtroften finds use on large
sections of like color, a user can select a variety of difiepaxels in semi-uniform sections
that would result in the same segmentation. To preventisebke those seen in in Figure
2.1c, painstaking attention must be paid to the toleranatishspecified. In addition to
varying the tolerance, anti-aliasing of the edge regionghefsegmentation is often an
option. The color similarity tool is most useful when imades/e distinct edges, since
with tolerance adjustments, the segmentation can beatestrio include everything up to

those edges.

1According to Schewe (2000), the Magic Wand tool has beemiéted in Photoshop since the 0.87 Alpha
release of the product in 1988.
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5

(a) 10% tolerance (b) 30% tolerance (c) 60% tolerance

FiG. 2.1. How varying tolerance affects what is selected fonsagtation using the Magic
Wand tool, where the same initial pixel was specified for esathction.

2.1.2 Intelligent Scissors/ Magnetic L asso

Another segmentation tool found in many image editing sugehelntelligent Scis-
sors(Mortensen & Barrett 1995) or, as Photoshop has labeleddtyagnetic Lassdool
(Adobe 2008). It is based on Mortensen & Barrett’s (1995ye-Wireboundary snapping.
The idea is that a segmentation boundary “wire” or line srnahject boundaries within
a given proximity to the interest point (normally the mousestylus position). This ap-
proach allows a user to interactively select the most sl@tatundary from a set of possible
boundaries. The goal is to produce boundaries that are ddwest localcosts where cost
is measured by the gradient magnitude of the image. Thuiy&wiire is attracted toward
strong edge features. Additionally, the path’s cost is meiteed by the interest point's
proximity to previously selected path elements and paaéhtture elements. Section 2.1.4
gives a more detailed explanation of what the texmst means in the context of image

segmentation.

2According to Adobe (1998), the Intelligent Scissors tooswecorporated into the Photoshop 5.0 release.
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(a) Beginning Selection (b) Continued Selection (c) Final Selection

FIG. 2.2. An example selection using the Magnetic Lasso toogrevithe user roughly
traced the outline of the figure in the image.

While this method works well for images that have distingjesl it has trouble when
trying to segment highly textured or untextured regions ttuthe many low-cost paths,
which can result in an increase in the amount of necessanjinteeactions. This can be

seen at the bottom of the segmentation in Figure 2.2c, wiedistinct edge existed.

2.1.3 Bayesian Matting

The “trimap” approach to image matting and segmentationimtasduced by Chuang
et al. (2001), based on the alpha estimation work of RuzonTanuasi (2000) and prior
alpha channel work of Porter and Duff (1984). The concepttoiaap is used to initially
distinguish between foreground, background, and unknegions of an image. There
then occurs a hard segmentation over distinctly foregraurhckground regions, with the
unknowns resulting in varying alpha values to representifigree to which an unknown
pixel belongs to either the foreground or the backgroundis &lgorithm models color

distributions probabilistically, and allows for the creat of high-quality mattes.
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2.1.4 Graph Cuts

A number of image segmentation algorithms treat imagesagshgr with pixels being

eguated to vertices / nodes. The following notation will sedito describe a graph:

G=(V,E) G is agraph) is a vertex setf is an edge set
veV v IS a vertex

ece ECV XV e is an edge

v L p; ¢, ; is the edge between andv;

w;; = w(e; ;) w; ; is the weight of edge,; ;

Graph cutting, a segmentation algorithm that uses imagehgrto achieve a desired
segmentation, is a building block for a number of other segat®n approaches. The set
of all pixels in an image are treated as verticed/inwith two or more additional special
vertices callederminals labeled in Figure 2.3b aurceandsink These terminals corre-
spond to the set dabelsthat can be assigned to pixels. In terms of image segmentatio
foreground and background terminals can be defined in oaddistinguish a foreground
element or object in the image from its surroundings. Tovalouser to specify which
parts of an image should be a part of the foreground or badkgkahe user is often given
the option of specifyingeedpoints on the image that correspond to a specific label. These
seed points influence surrounding pixels’ likelihood obdiging associated with the seed’s
label.

Graph vertices for adjacent image pixels are connected gsdvhere every edge
in the graph is defined to have some non-negatiggyhtor cost The edge weight can be
derived from the color or luminance difference between twelg, but can also take on

more complex forms, such as those used by the “imaging obgsttof Agarwala et al.
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source source

(a) Image with Seeds (b) Graph

(d) Segmentation

FIG. 2.3. Example of a directed capacitated graph with edges cefiected by thickness
of the edges(Boykov & Kolmogorov 2003).

(2004), as discussed further in Section 2.1.6. If the grapimdirected, the cost of the edge
going fromu; to v; will equal the cost of the edge going fromto v,. It is often sufficient
to calculate and store undirected edge weights, in whick easonnection between two
pixels can be stored efficiently using a single value. Howeawesome cases, a directed
graph is desirable. In those instances, moving from pixphtel in each direction requires
its own weight calculation and storage. A case where didegtaphs are appropriate is
when cost is to be calculated based on gradients, and maviagd direction across the
gradient is more desirable than the other. The edge from lapigel to a lighter pixel
might have a lower cost than the higher cost of an edge froghato a dark pixel.

It is not necessary for a pixel to only have edges betweendiitsimmediate neigh-
bors. More general cases use some measure of proximity eéontiee whether or not an
edge exists between pixels. Figure 2.4 shows several pligsstfor different neighbor-
hood sizes and the resulting structures. Varying neighdmiisizes find use in many parts
of the imaging field, from anti-aliasing and filter kernels,texture synthesis (Efros &
Leung 1999; Wei & Levoy 2000; Hertzmart al. 2001).

Once a graph has been created for an image, it is decompdsed dhsjoint sets,
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(a) 4-Connected Neighborhood (b) 8-Connected Neighborhood (c) 16-Connected Neighborhood

FIG. 2.4. Examples of regular neighborhoods used in 2D imagesssing (Boykov &
Kolmogorov 2003).

where each terminal appears in a different set, along witibaet of the pixels iV. The
aim of graph cutting is to minimize the cost ofitting edges between nodes. For both
directed and undirected weighting, the cost alidbetween two pixels is the sum of all of

the edges that are severed due to the cut, or more formally:

Z Wy y Ve, , Wherex # y;x,y € {i,j}. (2.1)

This leads to thenin-cutmethodology, where edge weights are thought of as energy,
and the goal is to find the minimum cut that can be made, amdngpasible cuts that
would separate the graph into thelisjoint sets. Another name for this approackmnergy
minimization The corollary to min-cut isnax-flow in which every edge’s weight is thought
of as having some flow potential. Max-flow methods seek tandtee connections that
allow for the greatest flow for each of the disjoint sets. Mut-and max-flow are equivalent
formulations.

The idea of using graph cuts for image segmentation is avelainew concept, first
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introduced by Boykov & Jolly (2001). The “Max-Flow” algohiin has found adoption
and expansion, with significant improvements being madé¢airtitial Ford & Fulker-
son (1956) approach of “Augmenting Paths,” and the “Puslatit®’ implementation by
Goldberg-Tarjan (1988). Max-Flow has seen applicatiomefteld of texture synthesis in
the work of Kwatra et al. (2003), with an increased perforagaimplementation developed
by Boykov & Kolmogorov (2002) opening the door for more irdetive opportunities in
the graph-cutting of images. They were able to reduce nieitiinute computations down
to just a few seconds.

Lombaert et al. (2005) presented a novel enhancement th grapng calledVulti-
level Banded Graph Cutsvhich significantly reduces computation time while desneg
the memory footprint for image segmentations. As can beisgeigure 2.5, their approach
involvescoarseninginitial segmentationanduncoarseningtages. The coarsening stage
simplifies the image as well as the seed points. Once a cextarseness threshold is
reached, a standard graph-cutting algorithm is run on thesemed image to produce an
initial segmentation. Uncoarsening translates the irsggmentation to the next level of
coarseness (the next level closer to the actual image) arsdaraonstrained refinement on
a band of pixels surrounding the segmentation boundarystdg the boundary locally.
Uncoarsening is an iterative process that continues ungibtiginal image level has been

reached.

215 GrabCut

Rother et al. (2004) presented a system that utilizes gratshic a novel segmen-
tation framework. The user is tasked with specifying a robghnding box around an
image object that they wish to segment out of the image. Inglsp, the user provides
multiple background seeds (the four corners of the bouniing, which enables an initial

energy minimization to produce a “hard” binary segmentatibthe image. The initial seg-
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Solve Graph Cut
at coarsest level Minimum Cut CX

Level K
(coarsest level)

S
.S
$5 .
& & Object Seeds
§
Level K-1

IK—I

Full Grid Graph g
atlevel K 4

\
1 Background Seeds Solve Graph Cut )
From Level K-2 on banded graph To Level K-2
at level K-1

FIG. 2.5. A visual overview of the multilevel banded graph cutpdathm presented by
Lombaert et al. (2005).

mentation is followed by running the edges of the segmanntdtirough a border matting
algorithm to determine alpha values (modifying the segutesr from binary (object vs.
not object) into anatte(object, not object, and partially object)). The partialject pixels
are given a calculated color estimate and an alpha valueasavtien the matte is placed
in a different scene, that new scene affects those partaijgct pixels. The user is then

permitted to refine the matte by explicitly specifying foregnd or background sections.

2.1.6 Interactive Digital Photomontage

Agrawala et al. (2004) presented a use of the graph-cuttiethod that enables a
single composite image to be made from the preferred parshefr images (see Figure
1.2). They did so through “imaging objectives” suchdesignated colqgrdesignated im-
age minimum / maximum luminang@inimum / maximum contrgshinimum / maximum

likelihood, or minimum / maximum differenc&hese high-level objectives effectively pro-
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duce varying energy functions for use in the edge weighttation. Unlike other image
segmentation schemes, edges exist not only between atljagels in a single image, but
also between aligned pixels in a stack of images. For a sfackwages, there are potential
edges between the correspondingdor all n images é?’l between images 0 and 1 eg’"
between images 0 and, with different weights for each of those edges.

This framework allows for interesting effects such as tiaygsed photography from
multiple separate still frame images, where an individupgsition melds from a starting
position in the first picture to where they end up in each sgibset picture. This process
shows motion across all blended images. Additionally, iesagken with different depths
of field can be merged into a single “extended depth-of-fighaige with all objects ap-
pearing in focus. Another effect is the ability to take nulkiimages and use only desired
parts of each one (see Figure 1.2), which is useful in sttaatwhere multiple pictures of
a particular scene exist, in which people or objects occhal¢ of the view. Using this
image objective allows a final composite to be created fraaptrts of each picture where
no occlusion occurs.

Some of these high-level objectives are extremely powekfalvever, the time it takes
to calculate a result across multiple images is a functiomobfonly how many images are
present, but also their sizes and which objective was chdsdending the algorithm with
Multilevel Banded Graph Cutsnabled the images in Figure 1.2 to be generated approxi-

mately two to three times faster than the original impleragan allows.

2.2 Random Walkers

The random walkers algorithm represents a different foatmh than the aforemen-
tioned segmentation approaches. It calculates prokabifior pixel-placed random walk-

ers “walking” across a series of connected pixels, cregiatfs of connectivity to one of
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the specified seeds. For the non-seed pixels of an imageds{iveg have yet to be associ-
ated with a particular label—this algorithm determinesgtabability that a random walker
starting at the given pixel first reaches each of the seedspieed pixels are defined to
belong to a particular labeling. For a given labelinghe probabilities for all seed pixels
of that labeling can be calculated as a single system of EmsatThe resultant probabili-
ties,x*® for labelings, are visualized for foreground / background labellingsguifes 2.6b
& 2.6¢ respectively. As can be seen from these Figures, exeh lgecomes part of the
segmentation for the labeling that it has the greatest fibtyeof reaching.

Grady & Funka-Lea (2004) first presented the random walkigrsrighm as an ap-
proach to the image segmentation problem, allowing for rtalttel segmentations. While
Figure 2.6 shows a binary segmentation of foreground / rackgl labellings (this thesis
takes the binary segmentation approach as well), the randakers algorithm is capable
of handling an arbitrary number of labels. Grady et al. (90b®&n presented the algo-
rithm’s application to alpha matting. These works, as welGaady’s (2006) outlining of
some of the beneficial properties of the random walkers dhgor(the abilities to handle
weak boundaries, function even when image noise is presediieal with ambiguous un-
seeded regions), have resulted in unique applicationsedltjorithm, such as the one seen

in Section 2.2.3.

2.21 Random Walkers Algorithm

While the concept of random walkers has been applied to tien@nsional segmen-

tation of volume data (Grady 2006), the focus here is on ifdieqtion to 2D images. In
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(a) Seed Points (b) Foreground Probabilities (c) Background Probabilities

FIG. 2.6. A visual representation of the random walkers inphieng seed points are repre-
sented byF & B, with question marks equating to unknown pixels. Possibtputs of the
random walkers algorithm can be seen in the next images jwvdtoate to the probability
that a random walker starting from each node first reachefothground seed, and that a
random walker starting from each node first reaches the lbackd seed. The foreground
and background segmentations (red and blue shaded regienshown for clarity’s sake.

this context, each image pixel will be represented by a gvaptex:

v; = pizel; i*" pixel of specified image
2
w; j = exp <_M> Gaussian weighting function (2.2)
o
d, = Z w;.; degreeye; ; incident onu;, (2.3)

whereg; is some measurable property @f(in the case of imageg; is generally either
color, intensity, texture, or luminance). Note that theueabfo (a weighting parameter) is

the only free parameter in this equationslfs constant, the part of Equation 2.2 can be
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simplified to a product. Specifically, the weighting cal¢ida can be reduced to:

5= (2.4)

wi; = exp(—B1lgi — g;1°)- (2.5)

As outlined by Grady (2006), the random walker probab#itiave the same solution
as the combinatoridDirichlet problem He indicated that “the solution to the combinato-
rial Dirichlet problem on an arbitrary graph is given exgdiy the distribution of electric
potentials on the nodes of an electrical circuit with resstepresenting the inverse of the
weights (i.e., the weights represent conductance) andothendary conditions’ given by
voltage sources fixing the electric potential at the ‘boumaedes.” ” In Figure 2.6, the
jagged lines between nodes represent these resistors itaeiGrady’s use of the term
“boundary nodes” (visualized && B in Figure 2.6a) refers to the seed pixels, where the
“boundary conditions” are functions that are applied asthpixels (see Equation 2.8).

The purpose of the Dirichlet problem here is to find a functioet satisfies this set
of boundary conditions for a given image / weighting. In tlase of the random walkers
algorithm, the Dirichlet problem seeks to find the non-bamdralues (unknown pixels’
random walker probabilities) for the Laplacian matfix L, which is indexed by vertices

v; andv; (Dodziuk 1984), is defined as:

d;  ifi=j,
Li; =4 —w,;; if v; andv; are adjacent nodes, (2.6)
0 otherwise.

The Laplacian matrix is used as a way to represent the camitecf a image. Negative
weights give the affinity of a pixel to its neighbor. Elemeatsthe diagonal are the accu-

mulated weights for all neighbors connected to a partiquibegl. Elements where no pixel
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connectivity exists are zero. A visual representation ohalacian matrix can be seen in
Figure 2.7b for a general graph and in Figure 2.7d as it spadifiapplies to an image
graph, wheré_ has been used to indicaig

Unlike graph cuts, this algorithm does not employ termindlsstead, vertices are
considered either marked or unmarked, where marked vertigaate to the seed pixels.
V' is partitioned intdl,; (the marked pixels) ant; (the currently unmarked pixels), such
thatVy, UV, = V andVy, NV = (0. Note thatl/,, contains all of the marked seed pixels,

regardless of which label they havi can be reordered to reflect this partitioning:

I Ly B
BT Ly

2.7)

Probabilities need to be found for the unmarked portion efltaplacian matrix[;, since
the labellings for the marked seed pixels are already known.

K is defined to be the number of labels, withequating to a particular labeling.
Determining the Dirichlet boundary conditions for seednpaj can then be defined as a

functionQ(v;), Vv; € Vi, wheres € +7Z,0 < s < K.

e 1 ifQv)=s (2.8)
0 if Q(v;) #s

The solution to the combinatorial Dirichlet problem, whiefuates to the desired
random walker probabilities for unknown / unseeded pixeds be found by solving the

large, sparse, symmetric, system of linear equations fdr kdoels:
Lyz® = —Bm?®. (2.9)

For a given labek, the probability of pixely; being part of labeling is x; for non-seed
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C90

\ /

(a) Weighted Undirected Graph (b) Laplacian Matrix for 2.7a (c) 2D Image Graph

(7 3

(d) 2D Image Laplacian Matrix

FiG. 2.7. The Laplacian matrix for a 2D image employing a 4-cabted neighborhood
has a very sparse structure, resulting in only 5 diagonasptain diagonal is the negative
row sums of the secondary diagonals. As an example of oneeoc$ums on the main
diagonal,Loo = dy = wo,1 + wo3 = —(—wo,1 + —wo3) = —(Lo,1 + Los) (the negative
row sum). Note that Figure 2.7c represents the graph foraighage, with each gray box
representing an image pixel. The zeros shown in red falliwitne secondary diagonals,
yet due to the structure of an image graph and its boundahiese indicate the absence of

an edge and thus have zero edge weight.
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nodes, andn; for seed nodes. The random walkers algorithm as it applieaages can

thus be summarized as follows:
1. Calculate the edge weights for adjacent pixels using tmuad.5

2. Populate the Laplacian matrix with these edge weightssam the rows to the main

diagonal

3. Determine the labeled (seed) pixels dét;, comprised ofK labels through user

specification or an automated process
4. Solve Equation 2.9 to attain the random walker probadslit® for each labek

5. Determine the segmentation by labeling each unknown,pixewith the label that

corresponds tanax,(zs)

Grady (2006) indicated that should interactive segmesnidie desired, starting at thB&?
step above, it would be possible with changes to the seed §axdo “use the previous
solution [z*] as the starting point for an iterative matrix solver for tieav system (Equation

2.9).” To allow interactivity, GPURW implements this appot.

2.2.2 |terative Solvers

Solving linear systems of equations of the fodm = b, as seen in Equation 2.9, can
be accomplished directly using methods such.dsdecomposition (Golub & Van Loan
1996). However, doing so comes with a significant memory irequent when working
on large systems that can quickly exceed the computatiaveepof today’s commodity
hardware. Alternative iterative methods provide a meansddving these systems that
reduces the required memory while allowing for constraic@d putation times (at the cost

of accuracy) (Barretet al. 1994). As an added benefit, the operations required by the
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iterative methods (data parallel sparse matrix-vectotiplidation, and reduction for inner
products) can be readily parallelized (Belzal. 2003; Kriiger & Westermann 2003).

The generalized form for iterative solvers requires therixat, a starting value vec-
tor xq, the right-hand-side vectdr, a maximum number of iterations,,., and an error
tolerancer < 1. Iterative solvers loop through a number of iterationscekating a refined
result per iteration. The intent is for each iteration’suteso come closer to the actual
solution than the previous iteration, with convergence¢ess) being achieved when the
difference between the result of adjacent iterations is thanr. Iteration results may
fluctuate or diverge, depending on the system to be solvediekter, the random walkers
algorithm has been proven to converge.

One of the best known iterative solvers, tleobimethod (Jacobi 1846), determines
a result for iteration by decomposingi into its diagonalD, its strict upper quadrarit,

and its strict lower quadrarit:

;=D YL+ U)xi_, + D' (2.10)

This method provides a stationary means of solving thegemgsthat requires few calcu-
lations per iteration. As this is a fairly simplistic methawbt much information is used in
calculating each successive iteration other than thetsestithe previous iteration. Thus,
convergence for many classes of problems is slow. As amalige, theCG (conjugate
gradient) method (Hestenes & Stiefel 1952) offers a notiestary option with additional
flexibility in terms of solving different classes of problenmNon-stationary methods present
information at each iteration to be used in helping the dateans converge more quickly,
with CG allowing for the inclusion of a preconditioné¥ (see Listing 2.1). The simplest

such preconditioner is again attributed to Jacobi, in wiiiadguates to the diagonal.
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ro=b — Ax /[/1nitial Residual
dy =P ~'rg /[/lnitial Preconditioned Search Directions
5()=er(]
for (i =1 t0 ine)

q=Ad_;

a=0i1/d;i_1q

X; =X +adi_; /[/lteration ¢ Result

r,=r;,_1 —aq /] Resi dual s

s =Pl /] Precondi tioning

5; =rTs

if (51 > T2(50) {

return /| Conver gence

}

B=0i/0i1

d;=r; +3d,_; /] Search Directions
}

Listing 2.1. Preconditioned conjugate gradient methodwdtBis et al. (to appear).

2.2.3 Soft Scissors

As the name impliessoft ScissoréVang, Agrawala, & Cohen 2007) inherits from the
Intelligent Scissoralgorithm discussed in Section 2.1.2, in that it is alboandary tracing
segmenter. Unlike theive-Wireboundary snapping of its predecessor, which results in
binary segmentations of foreground and background, thisréthm produces high-quality
mattes for objects that could encompass fur and hair (rasly difficult elements for
segmentation). Another unique element of Soft Scissorsisit confines computations to
very narrow update regions through what the authors catr&mental matte estimation.”
Instead of recomputing values for the entire image at eaghes for an update, as is the
case in graph cut-based algorithms, only the minimum setxaighave their color and
alpha values updated. This reduces the amount of computa¢icessary, and allows for

an interactive system that gives near immediate feedbattietoser.
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(a) Matte (b) Extracted Image

FIG. 2.8. An extract using Power MaskDigital Film Tools, which implements the Soft
Scissors algorithm. Note that gray values in the matte atdigarying percentages of alpha
transparency. The blue background in the extracted imatpeis for contrast purposes.

Soft Scissors additionally employs the random walkers ¢§r2006) algorithm for
its alpha and color determinations at the matte boundairigsyiting the benefits—such
as noise robustness and the ability to handle weak bousdagemvided by the random
walkers algorithm. When calculating color values, weiggttalculations of neighborhood
size four are used with the random walkers algorithm to detex a desired color value.
However, when calculating alpha values, Wang et al. chamssé a neighborhood size of
25 (presumably a 65 neighborhood, with the center being the pixel itself). dtuhd seem

that this works in favor of ensuring soft edges, as the title algorithm implies.

2.3 GraphicsHardware

With their work in programmable graphics architecturesuee with procedural shad-
ing, Olano and Lastra (1998) made other real-time appr@athe¢he shading problem
possible (Peercet al. 2000; Proudfootet al. 2001), but more notably showed what

programmability within the GPU could mean. With fixed fulctiunits being replaced
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by a fully programmable pipeline, programmers can do moae tinerely create textured
polygons. Through interactions with vertex / fragment /getry shader hardware, and
floating point suppo#t it is possible to achieve interactive effects with gragtiardware
that would have previously been inconceivable. Such effauatlude real-time lighting,
dynamic soft shadows, volumetric / layer / view distancegfag, screen space ambient
occlusion, subsurface scattering, motion blur and depftelaf, all found in the PC video
gameCrysis(Crytek 2008).

Graphics is an “embarrassingly parallel” field, in that iragojxel values can often be
calculated independently of each other. To handle the watkthat this property presents,
today’s GPUs are highly parallel processors. With many guzessors within the main
processor core, they provide efficient communication ferghocessing of geometry and
texture data on the graphics card. Though the data thatessid the GPU generally
pertains to graphical information such as vertices, c@od lighting, ultimately the GPU
uses integer or floating point data in the mathematicallrisive computations that prevail

in the field of graphics.

2.3.1 GPGPU Computing

In the recent past, there has been an insurgence of the GRld bsed on non-
graphics information; this phenomenon is known@BGPU (General Purpose Graph-
ics Processing Unit) computing. Thanks to the programmalgeline and the ability
to interact with it through standard APIs, it is now possitderun iterative solvers and
other linear algebra operations on the GPU in parallel g€ru& Westermann 2003;

Bolz et al. 2003). NVIDIAs CUDA (NVIDIA 2008a), ATI's CTM (Close to Metal)—

3Beyond single-precision, double-precision IEEE floatingpsupport has recently become available in
NVIDIAs newest GT200 series (NVIDIA 2008b).
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which paved the way for AMD’sStream(AMD 2008af—and Apple’sOpenCL (Open
Computing Language) initiative (Munshi 2008) represemidas’ attempts to integrate
GPGPU functionality with particular hardware. NVIDIAsoffmerly AGEIAS) PhysX
(NVIDIA 2008c) real-time physics platform is able to intetavith a number of different
graphics hardware platforms, from the XBox 360, to the Rity@an 3’s Cell processors,
and now with NVIDIA's GeForce 8 or greater lines of chips w@s@UDA.

In GPGPU computing, problems are decomposed into a groupeyitions called a
computekernel Operations might consist of basic math, memory / textuocesses, and
function calls. The kernel and its contained operation®geeuted in parallel on a number
of threads within the GPU, with each thread being able to gssdifferent sets of data,
yet using the same operations as all other threads in thespgmnding kernel. Consider
the simple problem of adding two vectors of length: andb, together and storing them
back into vector. A compute kernel to perform this task could spawthreads, and use
each thread’s id to index into the vectors:[:] = a[i] + b[:]. Thus, thread could calculate
thei’* element of the resultant vector. Since GPUs are highly dpéichfor data-parallel
or SIMD (single instruction multiple data) problems suchtfas one, kernels need to be
designed that allow for this distributed processing to talleadvantage of the processing
power available. Careful planning and attention are reguio ensure that problems are

decomposed into kernels that best utilize the GPU's power.

2.3.2 CUDA

NVIDIAs CUDAIs a set of APIs for the C programming language. It adds a numbe
of extensions to C for specifying where particular code &houn, either on a CUDA-

enableddeviceor on thehostplatform (generally the CPU). Additionally, there are exte

4Stream uses an extended version of the Brook (RaieKk. 2008) compiler.
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sions for specifying the number of threads that should coeatly be processing a partic-
ular compute kernel. It is the responsibility of the kermetdke advantage of the available
parallelism, though doing so often only requires changh®way that a loop iterator is
defined.

CUDA abstracts away the notions of running on the GPU by dgalith threads
rather than pixels, and device / host memory rather thamtest Once information has
been transferred from the host to device memory, outputsiefdevice function can be
used as inputs to the next. Thus, a number of operations pelsecan be run in sequence
without transferring any data back to host memory. The ayitaddressing of memory, or
scatter/ gatheroperations, are also permitted. This allows device menmhetaccessed
just as if it were host memory, although the accessing cantmmdone by device kernels.
For a host function to access device memory, that memory finsisbe copied back from
the device to the host. Once a kernel has been developed;atnipiled into byte-code
for use by a CUDA-enabled device. The compiled device codebedinked to separately
compiled host code so that interoperability between thedawotake place.

The extensions to C provided by CUDA have enabled a vast afragn-graphics ap-
plications to leverage the GPU'’s processing power, frormfired calculations and Monte-
Carlo option pricing, to Mersenne Twister random numberegators. Yet some of the
most profound contributions of CUDA come as built-in fuctality from NVIDIA'S pro-
vided CUBLAS (CUDA implementation of the Basic Linear AlgabSubprograms) and
CUFFT (CUDA implementation of the Fast Fourier Transforiitgaries (NVIDIA 2007).
Both allow for applications to be developed without requirthe developer to implement
these building blocks for the GPU.

While a number of iterative solvers have been developedHerGPU (Kruger &
Westermann 2003; Bolet al. 2003), none to date have been developed for one of the

major GPGPU frameworks such as CUDA (excepting @macurrent Number Cruncher
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work of Buatois et al. (to appear)). While Sengupta et al0@d(rovided sparse matrix-
vector multiplication for interoperability with CUDA, anithe CUBLAS library provided
the remaining parts needed for iterative solvers to be ededhe two have not previously

been combined.



Chapter 3

APPROACH

Like most graphics applications, GPURW follows lamtialize — Display L oop ap-
proach. TheDisplay L oop method allows for intermittedinput andUpdate calls, as can
be seen in the structural overview depicted in Figure 3.1.

The user loads an image to initialize the system. The imaget and height deter-
mine the allocation of host and device memory. The image&slmiolor data is transferred
to the GPU’s texture memory. Constant index, offset, andsgarrays are created to define
the sparse structure of the Laplacian matrix that will ldterused by the random walkers
algorithm. These allow for reduced calculation at run-timéhe determination of weight
locations and sums in the Laplacian matrix.

Once initialized, the mai@isplay L oop’s Output section begins processing and ren-
dering an orthographic view of the loaded image overlaid Hy ¢urrent segmentation
mask. Input methods allow the label seeding to be manipulated: seedbecadded, re-
moved, or modified by changing their label. Additionallysplay modes can be switched
to enable the viewing of probabilities, seeds, or otheripent information, as opposed
to the default view of the current mask. Finallyyput allows for manipulating certain
parameters of the system (such as tolerances or threslaoldsgfining the current mask.

In the event that the seeds / parameters are changed, or efi&rent is requested,

31
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FiGc. 3.1. An overview of the GPURW method.

Input signals toUpdate that the random walkers algorithm needs to re-compute thed pi
probabilities based on new information. Sirldpdate is the component of the algorithm
that requires the most computation, and is also the bottlen&the entire process, it is
only called as necessary, to minimize latency in the useemapce. Update starts by
calculating weights for the connectivity graph of the imagkese weights are propagated
into the Laplacian matrix with the help of the access arrasfindd during thdnitialize
stage (see the bottom five rows in Figure 3.2). Additiondligse weights are used in the
summation that appears on the main diagonal of the Laplac&nx. Once the matrix is
filled, preconditioning for the random walker’s iterativ@\ger occurs. The iterative solver
is executed for the Laplacian matrix, stopping once a cqyarese threshold reaches the
seed-determined tolerance discussed in Section 3.3.1.

Since the results of the random walkers algorithm are apmabe probabilities of

a specific unmarked pixel having a particular labeling, tr@bpbilities for each labeling
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need to be compared to determine which labeling has thesgtgabbability for each pixel.
The segmentation mask is then determined based on thisnafmn.

Output updates the user’s monitor using OpenGL routines to dighlaymage over-
laid by the current segmentation mask or other requestedagvelf a different display
mode was requested, the information pertaining to that moainstead be shown. Ad-
ditionally, Output has the responsibility of returning the segmentation maskraimage

matte once a satisfactory segmentation is achieved.

3.1 Initialization

After loading an image into GPURW, the pixel informationttiize image contains
is transfered to device memory. OpenGL pixel and luminandéls are allocated that
will later be used to transfer data on the device from CUDA&Emory space to OpenGL's
memory space without leaving the GPU. Use of the pixel buffeables the display of base
color data for the image for the computation of overlay iration identifying which label
a given region of the segmentation belongs to. The luminbnéfer allows for computed
probabilities to be displayed. Since the probabilitiesusdn the range from) to 1, dis-
playing them as luminance prevents the need for first comgettiem to RGB color values
and then displaying three color components rather thanajisyy the single gray-scale
luminance component. Once the buffers have been creaedatk associated with cor-
responding textures. All image and probability informatie drawn as a screen-aligned
rectangle. Binding the buffers to a texture allows the mnegiato simply be textured with
the calculated values and overlays in order for results is@ayed to the screen.

After OpenGL initialization, storage and structures neaeg for the random walkers
process are initialized. The allocationteinporary, x, b, andc vectors takes place. This

is followed by the generation of the sparse matrix repredimt for A that will be needed
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for iteratively solvingAx = b on the Dirichlet problem. Since CUDA allows for 1D, 2D
and 3D device arrays, creating the vectors as 1D arrays iseatanapping. CUDA pro-
vides a number of functions on 1D arrays, such as calcul#tied 2-norm and efficiently
calculatingax + y for arraysz andy and the scalat; these are all necessary for iterative
solvers. Implementing the vector-vector multiplicatitvat is also needed for calculating
the preconditioner term??, when preconditioning is used with CG equates to a simplisti
kernel, similar to the one described in Section 2.3.1.

For the matrix representation of, the translation to CUDA is much more compli-
cated. With problems that have densely packed matrices, deXize array could have
been used as the matrix representation. However, the Liaplatatrix for a 2D image is
extremely sparse, with only a few non-zero elements per Fawa 4-connected neighbor-
hood, only a pixel's immediate neighbor’s weights will appe the secondary diagonals,
resulting in a maximum of five non-zero elements per row (foeighbors and a sum).
Since a pixel may only have two or three neighbors (imageersrand edges respectively),
there are entries in the secondary diagonals that will egoatero as well (represented by
the red zeros in Figure 3.2). Excluding these from the Laalacepresentation has the
potential of avoiding the computation ®i x 2 floating-point zero values.

Instead of representing the matrix as a standard 2D CUDAy,atnea CUDPP (Sen-
guptaet al. 2007) sparse-matrix extension to CUDA is used to allow foreatly con-
densed version of the matrik. It uses a sparsity structure known@RS(compressed row
storage). CRS includes a vector of column indices for all-mero entries in the Lapla-
cian, a vector of pointers into the column indices vectot thdicate where a new row
begins, and a second vector of pointers to show where eacbnds: In addition to those
vectors needed by CUDPP for the CRS representation, GPUR¥¥es convenience vec-
tors for sum pointers (where sums should be stored into th® Ciplacian once they get

calculated), weight pointers (those weights that contelta a particular sum), edge pixel
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FiG. 3.2. Compressed row storage for an image-based Laplaaanixmwith additional
convenience vectors for on-the-fly kernel-based calautadf the Laplacian. Note that let-
ters are used in place of zero-based indices for claritiks.s@ince the graph is undirected,
the Laplacian is symmetric, with corresponding indicesespnted by like-colored boxes
in L and like-colored lines in the image graph.
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indices (which edges are affected if a seed gets placedspikel), and all weight pointers
(weights are calculated from upper left to lower right in thge, eliminating redundant
calculations of weights). These stored values can also &e iseFigure 3.2. Although
these convenience vectors entail additional storage neameints, they permit a number of
serial calculations to be saved in determining the spasditycture for CRS that would
otherwise bottleneck the pipeline. Initialization doe$ populate the non-zero entries of
the Laplacian; rather, it builds the structures for housiregn, determines how to calculate
them, and indicates where to place them once they have bérhatad.

Without the work done by Sengupta et al. (2007), who proviaede-release version
of CUDPP (the implementation of their Scan Primitives, which inaddsparse matrix-
vector multiplication functionality), the work presentedhis thesis would have been much
more difficult. Although other sparse matrix-vector muitption routines existed for the
GPU (Kruger & Westermann 2003; Boét al. 2003), they leveraged shader code instead
of providing the interoperability with CUDA that was reqged for GPURW. While the
CUDPP sparse matrix-vector multiplication implementajwovides the ability to change
the incoming vector, it required a fixed matrix. Once thisdixeatrix had been specified,
changing the values within the matrix was not an option. RerGPURW algorithm, the
Laplacian matrix is based on the currently specified seedtp@nd changes with every
manipulation to those seeds. Therefore, extensions to GU&IE required to get a direct
reference to the underlying CUDA storage where the matrinesare stored. So that
the actual sparse matrix need not change and the sparsitist does not have to be
derived at every seed change, the same structure that getflyirallocated is reused at

each iteration.
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3.2 Input

In order to visualize the different outputs and stages, tR&JBW process allows
for a number of display modes to view the image alone, latbeteground / background
probabilities, and the current segmentation. To permgetie be seen better on a variety of
image types (gray scale, low contrast), multiple overlaglemenable the segmentation to
be viewed as different colors or as the image and its invédeth the display and overlay
modes are made accessible by the input stage, and can bedagghg shortcut keys.
Additionally, shortcut keys have been specified for periogruser-requested refinements
to the random walkers output. A user-requested refinemeniifi@® the iterative solver
threshold and triggers a recalculation of the probabdjtresulting in a more accurate result
at the expense of additional processing time. For compapsoposes, switching between
different iterative solvers is also an option.

The main focus of the input stage is the user interactionpécify the seeds’ labels
and locations. The system provides a seed painting brusitilddte adding, changing and
removing seeds frorir,,. This brush acts like those found in standard painting pgesa
painting begins when the mouse is clicked, follows the basthe user moves the mouse,
and ends when the user releases the mouse button. Howelike, thiose brushes, color
or paths based on the brush are not applied. Instead, everlyysider a painted region is
marked as a seed point with its labeling coming from keyboaodifiers (CTRL, SHIFT)
that are pressed during the application of that brush stroke keyboard modifiers allow
for switching betweerioreground backgroundandnoneso as to specify which labeling
should be applied. Seed points can thus be changed fromloglenigito another by simply
switching the keyboard modifiers and repainting a desirgbre Additionally, if a region
is unknown (i.e., not foreground or background), repamiinwith the nonelabeling re-

moves any seed points that had previously been painted tBénee it may be desirable
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to indicate a large number of pixels as all being seeds ofdaheedabel, the seed painting

brush’s size can be adjusted, allowing more seeds to befiguoer brush stroke.

3.3 Update

When the user changes the marked seed pixels, the resultbenasined towards the
user’s desired segmentation. Since a modification to the gixels changes the arrange-
ment of the marked and unmarkeld,{ andL;; respectively) Laplacian entries of Equation
2.7, recalculation of the values fd@r each time an update occurs is necessary. Updating
translates the strokes from the seed painting brush intedirsg It then takes the initial
image’s pixel values and by applying Equation 2.2, dictétesnveighting and the ultimate
content ofL. Preconditioning then occurs when appropriate. This isfedd by the solv-
ing of the combinatorial Dirichlet problem using an itevatsolver. Finally, the probability
results from the iterative solver are translated, alongp Wie seeding, into the final proba-
bility values. Further update passes are initialized withgrior random walker solution to

allow for faster convergence as well as better interactgponse.

3.3.1 Seeding

Iterative solvers converge if and when calculations reasteady state where changes
from one iteration to the next are below a specified tolerancédditionally, iterative
solver calculations can be stopped if a maximum number odtittns have taken place.
This is useful when convergence is taking too long, and pitsveases where convergence
will not occur from continuing to iterate indefinitely. Forgblems that do converge (such
as the random walkers algorithmy),acts as a flexible limiter that provides a relatively

uniform result from one invocation to the next. Thus, GPUR&tualates tolerances in
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reference to random walkers as:

Vi-
Vi

T = (Tma:v - Tmin) + Timin (31)

where |-| indicates cardinality, and,,, and r,,,, are free parameters. For few seeds
(ILy| = 0), 7 = Tmae- As the number of seeds approaches the number of pixels
(|ILy| = |V]), T = Tiin. For the purposes of this papet,.. = 0.4 andr,,;, = 0.1
were found to allow results that were interactive and stididuced high-quality segmenta-
tions as more seeds were specified.

Using this definition ofr, the random walkers algorithm generates a smooth accu-
mulation of accuracy as seed points are added. As the nuribeeds increases towards
|V|, the tolerance decreases, producing results that are ¢ttodee optimal solution found
throughLU decomposition. While having less accurate results to b&gimis not as de-
sirable as producing the optimal solution, the trade-offarking greater accuracy up front
is slower convergence and, as a result, a system that istecaative. Thus, the user must
wait to refine their results. GPURW takes the approach thaiaas is known about a user’s
desired segmentation (more seed pixels equates to lesswnlpixels), the more accurate

it should strive to be.

3.3.2 Weighting/ Laplacian Filling

The entire weighting pipeline is implemented as a set of GBtdels or parallel pro-
cessing passes. The values used in the calculation of weights for the Laplaciame
from a CIE L*a*b* color conversion of the image, and usé aalue of 90 for the free
parameter in calculating Equation 2.5. While RGB valueddbave been used directly, a
slight benefit was seen from first converting to CIE L*a*b* e perceptual color spaces

such as CIE L*a*b* provide a more direct mapping to color idistions that humans per-
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ceive. The weights that are propagated into the sparse ¢iaplanatrix are recomputed
at each iteration through tHépdate process. This recomputation would allow future ex-
tensions to support varying weights. As weights are caledlaheir negative values are
scatteredinto the Laplacian matrix. as the secondary diagonals. The color conversion,
weight calculations, and prorogation all take place in @lsimevice kernel. Note that no
sums have been calculated at this point.

Solving the combinatorial Dirichlet probleni.(z* = — Bm?®) provides the means for
deriving the updated random walker probabilities for latgpé. Recall that iterative solvers
are designed to solve systems of the fofm = 6. Thus, to find the random walker proba-
bilities, the Laplacian and seeding information must beveaied into a representation that

is comprised of4, x andb parts. GPURW starts with the task of finding:

b= —DBm* (3.2)

for the right-hand side of thelz = b equation. A second kernel derives thiyvector
based on the weights found in tihi&portion of L (see Equation 2.7) that were calculated
in the first kernel. Theé vector is initialized to zeros, with seed points (represented by
the incoming edge indices vector in conjunction witfy) and the corresponding column
weight pointers vector that maps 1, being used to fill oub. Since GPURW allows
for two labellings, one for foreground and one for backghumwo separaté vectors are
produced based on the seeds, marked as such.

A third kernel is used t@atherthe weights in order to create the sums (using the
weight and sum pointers respectively), and to place themhemtain diagonal. At the
same time, the inverse of the main diagonal is calculated iasused by both the fixed-
point Jacobi and Jacobi preconditioned CG solvers. The-aat Jacobi solver requires

Ly = D7Y(M — D) for some matrixM, and the diagonal of that matri®. As the
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diagonal inverséD—! has just been calculated, it is used to transform the Lagaicito
Ly by multiplying D—! by the weights. Since ultimateli;; will have zeros on the main
diagonal for the fixed-point Jacobi, this is accounted faalkcation time, with the main
diagonal being excluded from the CRS representation fertyiie of solver.

Since the structure of the matrix used by CUDPP for sparsexnactor multiplica-
tions does not change after thatialization stage, the row and column entries that would
have been removed (where seeds exist) are instead set sazéne Laplacian matrix. For
the matrix operations required by CUDPP, this has the safeetafs actually removing
them from the structure. Though this is not the ideal sofufaalculations will still be car-
ried out on these zero values), it circumvents the need toreally reallocate the matrix.
Thus, Ly is the result of zeroing the row, column, and sum values far rows / columns

where the sum corresponds to a seed point.

3.3.3 Preconditioning

Preconditioning utilizes the fact that iterative solvdiewa for the use of prior knowl-
edge, or an initialized, vector. Finding the optimal, is difficult, yetz® from the previous
results provides an excellent source for this informati®he result of ondJpdate pass,
or z*, is used ag in the nextUpdate pass for labek. The vectorz® represents proba-
bilities for a prior pass based on the specified seeds at that ip time. Since the seeds
that are added, removed, or changed from Opéate cycle to the next are generally in
a close proximity to those that existed previously, the ltastiz® for subsequent/pdate
cycles are usually fairly close to those of the previous €yclhus, GPURW iteratively
(with each brush stroke) produces results that accountder f@edback with a relatively

short computation delay between refinements.
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3.34 GPU lterative Solver

With an initialized L;; matrix, b vectors from the weighting / Laplacian filling stage,
and the preconditioneg, vector, the system must now be solved in order to determime th
random walker solution. The fixed-point Jacobi method (speaion 2.10) is the simplest
iterative solver with storage beyond the matrix itself lgdimited to the inverse of the ma-
trix diagonal. Fixed-point Jacobi provides slower coneegrce than alternative solvers and
is rarely used in practice (Moin 2001), but in testing, it\ypd®d interactive and accurate
segmentations. Recall that for the fixed-point Jacobi immgletation, when calculating
Ly, the diagonal is not stored as part of with this representation being multiplied by
the inverse of the diagonal. Doing this givEs as seen in Listing 3.1. Beyond this up-
front computation of the sparse matrix, the only other dakoons involved in this solver
are the vector-vector multiplication required to calcelgtand the computation-intensive
matrix-vector multiplication seen in calculatirg:. Fortunately, CUDPP provides a GPU
optimization for the non-trivial sparse matrix-vector mplication of Pz. The CUDPP
CRS matrix representation and sparse matrix-vector dpestalong with the CUBLAS
GPU optimizations for determining an L2-nornblasSnrmand for adding two vectors
togethercublasSaxpyprovide the necessary building blocks for implementiregative

solvers on the GPU.

While pairing different preconditioners with the conjugatradient method or choos-
ing alternative storage formats (other than CRS) mighthheltter results, they would come
at the cost of more storage and increased complexity in tiversditeration loop (Barrett
et al. 1994). For comparison, a Jacobi preconditioned CG solveeas in Listing 2.1 has
been implemented, where simply equals to the matrix diagonal. Additionally, an ugypr
conditioned CG solver has been included, which equatesttiogd, = ro ands = r; in

that same Listing.
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D = diagonal (A) /| Sparse Di agonal Matri x
ID = inverse(D)
P=—ID %« (A—-D)
c=IDxb /'l Vector-Vector Multiplication
do = |b| //L2-norm
for (i =110 i) {

(5:50/|X|

if (60<7){

return

}

X =C + Px /1 Matrix-Vector Multiplication
h

Listing 3.1. Fixed-Point Jacobi Solver pseudo-code basadatthews (2004).

3.3.5 Probabilities

With the standard random walkers algorithm, it is sufficienterminate computation
once K — 1 of thez® systems have converged (GPURW Has= 2 different labels for
foreground and background). At that point, determiningaliHabeling has the greatest
probability at each pixel dictates which labeling that pixelongs to. With two labellings,
this could be simplified to computations in only a single egst If the pixel’'s probability
were greater thaf0% for one of the two labelings, that pixel would be associatétth w
that higher probability labeling. However, the systems PURW do not generally reach
the same level of convergence that would allow for this topesp Instead, the calcula-
tions end when the seed determined tolerance of Equatiois B&t, so the probabilities
of the two labelings do not necessarily sum to one. Thus, dblmes necessary to run
calculations against both systems and determine, for @aeh which system (foreground
or background) has a greater probability in that labeling'sector. Since all seed pixels

equate to boundary conditions, and were thus removed frencadmbinatorial Dirichlet
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(a) Unsegmented Image (b) Seed Points (c) Foreground Probabilities

(d) Background Probabilities (e) Segmentation (f) Extracted Image

FiG. 3.3. Different outputs of the Random Walkers process.

problem, the seed pixels are merged with their respectivelitag’s =* vector as having
100% probability, and are merged with thé vector of the alternative labeling as having
0% probability, based on Equation 2.8. This distinction betwe/hether a pixel belongs to
the foreground or the background, based on the comparistire gdrobability vectors and

whether that pixels was explicitly labeled as a seed, detersithe segmentation.
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3.4 Output

As seen in Figure 3.3, GPURW offers many different possikigputs and display
modes. Using the probability outputs calculated duringpphulity determination, a seg-
mentation mask is created. The mask is used by the OpenGérsautput functionality to
overlay the current segmentation on top of the base imadéglre 3.3, the segmentation
is displayed using a red-blue color overlay mode. The oysrtan be high-contrast, such
as viewing the background portion of the segmentation abdle image inverse, with the
foreground shown as overly saturated. Another option igbirdulling the background
and allowing the foreground to show through normally. Beyeaeing the image overlaid
with the segmentation, a means for seeing the underlyiraylzded probabilities from the
random walkers process, as well as all of the seed pointhi#lvatbeen previously placed,
is provided. In this way, if a user is attempting to determitey the segmentation is not
matching their idea of what it should be, they can see whexiegtilities diverge from their
expectations and find places that may require additional gemts.

Since GPURW follows theDisplay Loop paradigm, user inputs such as mode
switches or seed manipulation are permitted as soon asnsotgput is written. These
both act as interrupts that trigger theput stage. Given display mode switches, the cur-
rent input and calculated outputs are reused, with only edpenGL parameters requiring
manipulation. This process reduces the amount of recoripataequired in thdJpdate
stage. Théisplay L oop continues until the user either requests to exit the apjbicaor
indicates that the results are satisfactory. Once a setiisfasegmentation has been found,

it is output as a grayscale alpha matte.
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3.5 Application Interface

Following the direction of Fung & Murray (2008), the GPURWjatithm is imple-
mented as a CUDA-enabled Photoshop filter. In order to intevih Photoshop, GPURW
requires an RGB mode image (although the image data can egcagscale values) to be
loaded into an unlocked layer. A layer mask must then be atl#éte image layer. This
layer mask is where the segmentation results will be writedfectively creating a matte
segmentation. Once these two preliminary steps are peefhrthe GPURW filter must
be selected, and the user will be presented with the apiplicatindow. The application
window is a darkened version of the image; if the mouse isiwithe window, a cursor

indicates the location and size of the seed-painting brush.



Chapter 4

RESULTS

41 Validity

To evaluate the validity of the segmentations that GPURWIpees, its results are
compared to those produced by the random walkers MATLAB @m@ntation of Grady
(2006) for numeric equivalence. Grady’s implementatioadpices a highly converged
probability vector,z*, for each labelings. Comparing GPURW'’s probabilities to those
produced by Grady’s implementation requires that GPURWdndigured to run to higher
levels of convergence than it was designed for. This distasdtingr to a fixed toler-
ance, and increasing,.. to values that no longer yield interactive results. Addititly,
programmatic seeding is required that places foregrouratkdround seeds in identical
locations between the MATLAB implementation and the GPURNplementation.

Apart from a few aliasing artifacts, this setup produceslgesmual probability images
between the two algorithms (see Figures 4.1b & 4.1c comptarédgures 4.1h & 4.1,
Figures 4.2b & 4.2c compared to Figures 4.2k & 4.2|, Figuré&a4& 4.3b compared to
Figures 4.3] & 4.3k, Figures 4.4a & 4.4b compared to Figurd$ & 4.4k, Figures 4.5b
& 4.5c compared to Figures 4.5 & 4.5m, and Figures 4.6b & €@&wpared to Figures
4.6k & 4.6l). Any variance can be attributed to the fixed taferer, being either greater

or less than the tolerance that the MATLAB sparse matrix afp@ns uses. It can be seen

a7



48

(a) Base Image (b) Foreground Grady (c) Background Grady (d) Segmentation Grady

HE.

(e) Foreground A (f) Foreground B (g) Foreground C (h) Foreground D

(i) Background A () Background B (k) Background C () Background D

(m) Segmentation A (n) Segmentation B (o) Segmentation C (p) Segmentation D

FIG. 4.1. Comparison of GPURW outputs to outputs of Grady’s Q@MATLAB code
run to convergence. TH&? & 374 rows show GPURW foreground / background probabil-
ities for the Jacobi fixed-point solver with 800 iteratioAg,(the Jacobi conjugate gradient
solver with 300 total iterations at 10 iterations pédate pass (B), the Jacobi conjugate
gradient solver with 300 iterations from a sindgd@date pass (C), and finally the Jacobi
conjugate gradient solver with 750 iterations (D - convaggy. The final row shows seg-
mentations for the corresponding test-cases.
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from the preceding Figures that GPURW convergence, usmgehative Jacobi conjugate
gradient solver, matches that of the MATLAB random walkenplementation. The Jacobi
fixed-point solver also reaches convergence, though mamg neoations are required than
for the Jacobi conjugate gradient method. GPURW's use @tite solvers and its overall
implementation of the random walkers algorithm are showpréaluce segmentations that
have the same validity as Grady’s implementation of the sand/alkers algorithm.

However, producing interactive segmentations dictates@PURW cannot run to this
level of convergence. Instead, a relatively small value fQr. and calculating- based on
Equation 3.1 allows for short periods of calculation to proelintermediate results. Since
GPURW does not run to full convergence, it is also necessashow that intermediate
segmentations from higher tolerances produce equivadégmentations to those produced
by full convergence (see Figures 4.1m, 4.1n & 4.10 comparédgure 4.1d, Figures 4.2g
& 4.2) compared to Figure 4.2d, Figures 4.3f & 4.3i comparedrigure 4.3c, Figures
4.4f & 4.4i compared to Figure 4.4c, Figures 4.5g & 4.5j comepato Figure 4.5d, and
Figures 4.6g & 4.6] compared to Figure 4.6d). As can be seen fhese Figures, GPURW
using the Jacobi fixed-point solver or the Jacobi conjugeddignt solver in a variety of
different seeding situations, produces identical segatemts to those produced by Grady’s
method run to convergence. It can also be observed that tabiJixed-point solver
requires significantly more iterations than the Jacobiwugafe gradient solver to produce
comparable segmentations.

Since part of GPURW's preconditioning is its use of the ppegiJpdate pass’st® as
thex, values to initialize the iterative solver, showing that tiplé passes through the iter-
ative solver still produces the same segmentation is atpaned (see Figures 4.1n, 4.2m,
& 4.3l). GPURW produces the segmentation in Figure 4.1ngusie Jacobi conjugate
gradient solver with 10 iterations pélpdate pass and 30 update passes for 300 total it-

erations. This is the same segmentation seen by runningieggence. While multiple



(a) Base Image

(b) Foreground Grady (c) Background Grady (d) Segmentation Grady

(e) Foreground A (f) Background A (g) Segmentation A

(h) Foreground B (i) Background B ()) Segmentation B

(k) Foreground C (I) Background C (m) Segmentation C

FIG. 4.2. Comparison of GPURW outputs to outputs of Grady’s @MATLAB code run

to convergence. The center circle5id’ gray. GPURW foreground / background proba-
bilities with segmentations are shown for the Jacobi fixeovpsolver with 510 iterations
(A), the Jacobi conjugate gradient solver with 260 iterai(B), and finally the Jacobi con-
jugate gradient solver with Bpdate passes at 850 iterations per pass (C - convergence).



(a) Foreground Grady (b) Background Grady (c) Segmentation Grady

(d) Foreground A (e) Background A (f) Segmentation A

(g) Foreground B (h) Background B (i) Segmentation B

(j) Foreground C (k) Background C (I) Segmentation C

FIG. 4.3. Comparison of GPURW outputs to outputs of Grady’s @MATLAB code run

to convergence. The center circlesi¥t gray. GPURW foreground / background probabil-
ities with segmentations having two foreground and one ¢paknd seeds are shown for
the Jacobi fixed-point solver with 4490 iterations (A), theabi conjugate gradient solver
with 270 iterations (B), and finally the Jacobi conjugatedigat solver with 2Update
passes at 370 iterations per pass (C - convergence).
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(a) Foreground Grady (b) Background Grady (c) Segmentation Grady
(d) Foreground A (e) Background A (f) Segmentation A
(g) Foreground B (h) Background B (i) Segmentation B

(j) Foreground C (k) Background C (I) Segmentation C

FIG. 4.4. Comparison of GPURW outputs to outputs of Grady’s @MATLAB code run

to convergence. The center circlesi¥t gray. GPURW foreground / background probabil-
ities with segmentations having two foreground and one dpazknd seeds are shown for
the Jacobi fixed-point solver with 700 iterations (A), theala conjugate gradient solver

with 195 iterations (B), and finally the Jacobi conjugatediggat solver with 500 iterations

(C - convergence). Differently located (more closely pthcgeeds allow segmentations /

convergence equal to Figure 4.3 after fewer iterations.
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passes through the iterative solvers that use the prevesustras part of preconditioning
(see Figures 4.1f & 4.1j) will yield the same segmentatiothassame number of consec-
utive iterations (see Figures 4.1g & 4.1k), the consecutiethod approaches complete
converge faster. Unfortunately, the consecutive-methmgaach comes at the cost of a

loss of interactivity.

4.2 Performance Considerations

Comparing Figure 4.3 to 4.4, the latter not only convergesenquickly, but also
reaches the desirable segmentations more quickly. Thi# iz be attributed to the loca-
tions of the seed points. While both Figures contain twodoyand and one background
seeds, the seeds in Figure 4.4 are more closely positiond@ra centrally located (further
from the edges of the image). This means that the random vgalgand at the edges of
the image to have approximately the same distance to “walkhase found at the center
of the image. In Figure 4.3, the random walkers found at trgeeaf the image have to
walk a short distance to reach the edge seed pixels, butmanddkers towards the center
of the image have much further to walk. With the seeds beingerdensely clustered in
Figure 4.4, random walkers found between the closely lacageds more quickly show
which seeds they have an affinity to. Thus, intermediateltsesuil also reach a desirable
segmentation more quickly (Figure 4.4i reaches the desigthentation 28% faster than
Figure 4.3i). Though these are properties of the randomewslalgorithm that GPURW
builds upon, itis important to note that the placement ofilgexels does affect convergence
and segmentation speed.

In addition to the placement of seed pixels, the number off g@eels also affects
convergence speed. As can be seen by comparing Figure 4.6, teigure 4.6 converges

significantly faster4£ 50%). Comparing the slower-to-converge Jacobi fixed-pgohters
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for these two examples, Figure 4.6g take24% as long as Figure 4.5¢g to reach the same
segmentation. This difference can once again be attribatede distance that random
walkers have to “walk” to reach the seeds. With the compasibf these Figures, the spiral
dictates that random walkers have to walk through the spg#lwalking through a maze.
The walkers at the edges of Figure 4.5 have a significantdistto travel before they reach
the seeds. In contrast, the walkers with the greatest distartravel in Figure 4.6 are those
found halfway through the spiral; it takes these walkergaximately the same amount of
time (number of iterations) to walk to the seeds in the ceoténe image as it it takes to
walk to the seeds at the edges of the image. Hence there 8086 speedup from Figure
4.51t0 4.6. This once again shows how seed placement an@fuhia number of seeds can
drastically affect the speed of reaching a desired segrment&PURW acknowledges and
addresses this effect through its ability to quickly showhewly placed seeds affect the
current segmentation, and its allowance for the additiones¥ seeds to areas that would
benefit from them (areas that are not yet part of the segniemtat

Since GPURW builds upon the random walkers algorithm, ihgaroperties of the
underlying algorithm as well. Gap-spanning (see Figurg drid indeterminate-region-
spanning (see Figure 4.2) are both present. These prapenake the random walkers
algorithm work well, yet relying solely on them and just a feged points can result in un-
desirable results. As can be seen by comparing the segmoastat Figure 4.2 to Figures
4.3 & 4.4, the segmentation that is produced from just a fedseften requires additional
seeding to encompass all desired regions (in this case@ttBrinner circle as part of the
foreground segmentation). GPURW'’s approach to quicklyiragldeeds, and for interme-
diate results (not full convergence) to dictate the segatemt, makes it easy to see regions
that do not match the desired segmentation and to add nevpsédd in those regions.

Since the number of seeds and their proximity to one anoftfesata how quickly con-

vergence / segmentations are reached, GPURW can be tasttedegimenting the Lena
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(a) Base Image (b) Foreground Grady (c) Background Grady (d) Segmentation Grady

)

(e) Foreground A (f) Background A (g) Segmentation A
~__ y

(h) Foreground B (i) Background B (j) Segmentation B

(k) Foreground C (I) Background C (m) Segmentation C

FIG. 4.5. Comparison of GPURW outputs to outputs of Grady’s Q@MATLAB code
run to convergence. GPURW foreground / background proitiakilwith segmentations
are shown for the Jacobi fixed-point solver with 75000 iieret (A), the Jacobi conjugate
gradient solver with 1530 iterations (B), and finally thealacconjugate gradient solver
with 2920 iterations (C - convergence).
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(a) Base Image (b) Foreground Grady (c) Background Grady (d) Segmentation Grady

|-

(e) Foreground A (f) Background A (g) Segmentation A

©

(h) Foreground B (i) Background B (j) Segmentation B

©©

(k) Foreground C (I) Background C (m) Segmentation C

FIG. 4.6. Comparison of GPURW outputs to outputs of Grady’s @MATLAB code run

to convergence. GPURW foreground / background probaslitith segmentations having
four foreground and five background seeds are shown for ttebdfixed-point solver with
17650 iterations (A), the Jacobi conjugate gradient sokidr 700 iterations (B), and the
Jacobi conjugate gradient solver with 1510 iterations (Gnvergence). More seeds allow
segmentations / convergence equal to Figure 4.5 after figgvations.
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0 50 100

% Percentage Change

(a) Trimap (b) Trimap Overlayed  (c) Difference Scale (d) Foreground 1

(e) Difference 1-2 (f) Foreground 2 (g9) Difference 2-3 (h) Foreground 3

(i) Difference 3-4 (j) Foreground 4 (k) Difference 4-5 () Foreground 5

(m) Difference 5-6 (n) Foreground 6 (o) Difference 6-7 (p) Foreground 7

FIG. 4.7. Probability images (Foreground 1 - 7) and the amoudiftédrence between one
probability image and the successive probability image.ilAhges were generated using
the GPURW algorithm with a Jacobi conjugate gradient soli/ke solver went through the
image number (Foreground 1 =1 ... Foreground 7 U@jlate passes at 100 iterations per
pass. The trimap equates to white being labeled as foredreesds, black as background
seeds, and gray being left as unknown to be solved for.
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female image based on a trimap approach (see Figure 4.7allReat in a trimap, there
are known areas of foreground and background, as well asnegf unknown pixels to
be solved for. This directly equates to the random walkegsrghm with two possible
labellings (foreground / background) and thus to the GPURYydrahm. The unknown
regions equate to pixels that have not been given a seed a&ddtode solved for. Pro-
grammatically seeding GPURW with the trimap shown in Figdga, where everything
in black is labeled as background seeds, everything in vasitioreground, and the gray
regions being left as unknown, produces a segmentationaafimall number of iterations
that is close to that seen in a converged result. In lookinigeasuccessive images in Figure
4.7, the greatest amount of change fropdate pass toUpdate pass can be seen in the
earliest passes. As additional passes occur, the amouangbrobability information that
is calculated can be seen to significantly decrease froma@tss of nearly 100% change
in Figure 4.7e, to the greatest change being less than 5%imd-#.70.

Observing this property lends merit to GPURW'’s implemdotadf the seed-painting
brush, which enables a user to paint varying-sized regibseeatls at one time based on the
size of the current brush. Adding new seeds to regions & tittange (regions that would
otherwise take a large number of iterations to be added tedgmentation) results in the
greatest amount of change in those region for the immegipteceedindJpdate passes.
Additionally, the change in the effect of those new seedgéndo level out as seeds are
added elsewhere. Should new seeds be added in close protomiteexisting seeds, there
will once again be the largest amount of change surroundiaget new seeds, with that
changing being driven by both the new and the old seeds.

The GPURW method provides interactive image segmentati@ipermit continual
specification of additional user intentions. Since it prés@ new way of interacting with
the segmentation problem, there are still a number of amgdle. Through continued use

of the interface, good and bad usage patterns have beerfigtkiihat dictate to what
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extent the application remains interactive. Specifyingi@é number of seeds initially
(i.e., starting with a large seed painting brush) resulta wery low initial tolerancer.
When the algorithm begins, no or limited preconditioninpmation exists from prior
iterations. Thus, with a low initiat, the algorithm must run through more iterations in
order to converge upon the low tolerance. The adverse affieatlower tolerance for
7 IS a greater number of iterations to reach that toleranceus,Tthe system becomes
less interactive. One solution to this is to redugg, to a value that permits interactivity
regardless of.

By starting with the specification of just a few seeds, and raespondingly higher
T, convergence is reached much more quickly then is the caveanowerr. As more
seeds are added, the application utilizes the results famh prior pass to accommodate
the tolerance being gradually restricted. Though this egegtern proves to be optimal for
this application, it is not imposed as a restriction. It istaghe user to decide how they
want to interact with the application. The performanceistias outlined in the following

sections reflect this preferred usage pattern.

4.3 Base Performance

The testing platform used was a Windows Vistaystem comprised of an Intel
Coré" 2 Duo 6400 running at 2.13 GHz, 2 - 1GB dims of DDR2 RAM, and ariDM ®
GeForce 8800 GTS 640MB GPU all running at factory speeds. As can be se€able
4.1, the number of rows and non-zero entries in the CUDPP CB®ressed row stor-
age) sparse matrix structure, scale logarithmically witage size. The device and system
memory also follow a logarithmic trend beyond constant mgmequirements (see Figure
4.8).

Table 4.1 shows favorable results in terms of the amountred tiecessary for produc-
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ing a “satisfactory segmentation.” Since satisfactorynsegtation is a subjective measure,
producing results that approach an unrefined (without largeunts of time spent highly
refining edges) result of similar quality as other segmeémadlgorithms is used as the
success criterion. Due to the edge limitation that will becdssed in Section 5.1.1, expect-
ing other algorithms to produce perfect results would giRJRW an unfair advantage in
comparison to those other algorithms.

The test system has noticeable difficulty maintaining teaé performance with
larger images, although interacting with the algorithmmages up to 1024s feasible (in-
teractivity here is defined as the system functioning at aneagye of two or more frames per
second). As image size increases, the amount of informettioa processed far exceeds the
concurrent processing capabilities of the available hardwior the NVIDIA GeForce
8800 GTS 640MB GPU used, there is the possibility of 9,21&ament threadswhen the
GPU is fully utilized. It can be seen from Table 4.1, that ia #imple case of calculating all
of the non-zero values for the sparse matrix even for a sr28lk128 image, the number of
non-zero values is much greater than the number of condumesads that this GPU is ca-
pable of handling. This lack of balance between threadsaiodnation to process results
in all of the information not being processed at once, butad being processed in thread
blocks Each block must wait until previous blocks have completertgssing to gain ac-
cess to the GPU'’s processors. Yet the performance of thenamdlkers algorithm—and
therefore GPURW—scales depending upon the hardware orhvithig run. Fortunately,
incorporating additional parallel computing power (iragking more threads available for
concurrent processing) into systems using CUDA is feasMEDIA offers the ability to
link multiple GPUs together, providing more computing powas needed. Handling larger

images at more interactive rates could therefore be endlylddcorporating additional

1According to NVIDIA (2008a), this GPU has 12 multiprocesswith a maximum of 768 threads per
multiprocessor.



Image Size (pixels) 1282 2562 5122 1024°
CRS Row Count (pixel count) | 16,384| 65,536 | 262,144 | 1,048,576
CRS Non-Zero Values 65,024| 261,120| 1,046,528 4,190,208
Device Memory Used (MB) 59.72 | 69.88 110.5 273.3
System Memory Used (MB) 50.54 | 56.484 | 88.588 | 223.564
Satisfactory Segmentation (se¢.)14.9 19.1 34.3 93.1
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Table 4.1. Statistics pertaining to GPURW for the Lena femiadage at different resolu-
tions. Note that the device memory consumption indicattes toemory being used by the
GPU. Thus, there is constant memory in use due to the GPUiaadlliy functioning as
the primary display adapter (the operating system accdontsis constant allotment of
57.2 MB for general display purposes).

300
250 //
200 ///
150 /
e /
50 i— =
0
128 x 128 256 x 256 512 x 512 1024 x 1024
Image Size
=#=Device Memory Used (MB)
=@-System Memory Used (MB)
Satisfactory Segmentation (Seconds)

FIG. 4.8. Plotted statistics from Table 4.1, showing the catreh between the logarithmic
scaling of memory use and time-to-segment with the logamitichanges in image size.
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compatible GPUs and programming CUDA to take advantageemhth

4.4 Performance Comparison

Since Photoshop is a professional digital image editingesaome of the algorithms
outlined in this paper have been implemented as Photoshegsfir selection tools, and
are thus available for comparison purposes. Figure 4.9 aoesgghe segmentation results
and user interaction required by the GPURW framework toelogiser Photoshop plug-ins.
Each is tasked with segmenting Lena (the woman in the image) fier background. The

plug-ins in the comparison are:

e Adobe’sMagnetic Lasso

GrabCut(implementation does not include edge-matting)

GPURW (binary masking)

Digital Film Tools® Snapv2.5.3 (graph cutting implementation)

Digital Film Tools® Power Maskv1.0 (Soft Scissorsmplementation)
e GPURW Probability (probability-based masking)

The findings indicate that in all of the algorithms, edge hiagdposes the greatest chal-
lenge. While many algorithms offer advanced features toedfie edges, the time required
for edge refinement significantly adds to the initial segragon time.

Of these segmentation algorithms, the majority provideyirgstrictly foreground or
background) results, except fBower Maskand the probability-based masking version of
GPURW. Observing the binary results, all have difficultylwthe purple feather and the
hair on the right side of Lena’s head, thou@nabCutand GPURW retain some of the

edge detail (see Figures 4.10b & 4.10c respectivéyaploses parts of the edge contour
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due to its simplifying the graph-cutting results to prodacspline. While this results in
a smooth edge, fine detail along the edge gets lost (see Hglde). Magnetic Lasso
also suffers from a similar issue, in that the segmentatiambary “snaps” to features that
sometimes encompass edge detail, and other times, todedhat lie within the object or
background. This “snapping” causes the boundary to oveplfly segmentation details
(see Figure 4.10a). All of the binary methods handle disgdges, like the one defined by
the edge of Lena’s hat, fairly uniformly.

Since there was no direct comparison Rawer Mask GPURW was modified to use
the foreground probabilities as the matte directly (rathen determining the maximum
probability between the foreground and background). Byndaio, the resultant matte’s
values are able to indicate strictly foreground, strictigkground, or some combination of
foreground / background for each pixel. A comparison of tr@bpbility-based masking
version of GPURW to the standard GPURW algorithm can be seleigure 4.11. Note that
in order to achieve foreground probabilities that are ablprbduce a viable matte, either
the probabilities need to be normalized, or GPURW needs taubeuntil it approaches
convergence. This probability-based masking version dJBW andPower Maskboth
handle the hair and feather more thoroughly than the bireggnentation method®ower
Maskdoes a better job than GPURW with the feather in ensuringdiiatils remain intact
(see in Figure 4.9e and more visibly in Figure 4.10e how thdrits of the feather extend
beyond the main edge). However, both of these methods hews atong the top edge of
the hat, either adding to or taking away from what should lotugted in the segmentation
(see the left side of Figures 4.10e & 4.10f).

With the Magnetic LasspGrabCutrefinements (beyond the initial rough bounding
box specification) an&ower Mask careful input is required. For thdagnetic Lass@and
Power Mask the main interaction with the algorithms is in explicithating the edge of

a desired object. FaBrabCutrefinements, specifying either additional sections of fore
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(e) DFT Power Mask - 78s (f) GRURW Probability - 71s

Strokes (a) Strokes (b) Strokes (c) Strokes (d) Strokes (e) Strokes (f)

FIG. 4.9. Comparisons of different segmentation methods. $atations can be seen in
the top two rows (the amount of time required for the segniemtan seconds is shown
next to the name of the algorithm), while the inputs requtredreate the segmentations in
their respective interface can be seen in the bottom row.d&e#les equate to foreground
markings, blue to background, and yellow represent exghoundary indications. The
boxes with dashed lines in the segmentation image are edlangFigure 4.10, with the
blue seen on the left, and the red on the right.
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(a) Zoom of Figure 4.9a (b) Zoom of Figure 4.9b (c) Zoom of Figure 4.9c

(d) Zoom of Figure 4.9d (e) Zoom of Figure 4.9¢e (f) Zoom of Figure 4.9f

FiG. 4.10. Comparisons of specific regions of different segatert methods. The left

side of each image is an enlarged version of the blue dashesdam in Figure 4.9, while

the right is for the red dashed box in the same Figure. Thesld#é shows a region of
the segmentation that perceptually should be a distinct édge running along the top of
Lena’s hat. The right side shows a region comprised of ththéedrom Lena’s hat, which

presents the challenge of semi-transparency.
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ground or background must occur very close to the actual demynfor the new specifi-
cations to have any effect on the segmentation. All threairegpatience and a steady
hand, since accurate input equates to accurate resulgmeséations. In contras§nap
both versions of GPURW, and the initial bounding box speaiftn of GrabCut permit
rough indications of the user’s desired segmentation. Emetit of handling these rough
indications is seen in the reduced amount of time that itddkethem to be specified by a
user.

Figure 4.12 shows a closely textured CT scan, in which thegdd the objects for
segmentation (the three white regions) blend into theirosurdings. There are no dis-
tinct edges for the three regions, but rather a tapering fndmte to the gray texture that
surrounds them. As can be seen from Figure 4.12d, due to ¢keofadistinct edges, the
Magnetic Lassdool requires a large amount of input. This results in itarigknearly
double the amount of time th&nap& Power Masktake, and more than twice the time
that GPURW requires. It once again suffers from a lack of edigf@il due to its over-
simplification between input points. Unlike the rest of thgosithms, Snapis unable to
handle multiple distinct objects, which results in threeoitations of the plug-in to pro-
duce the three distinct objects of Figure 4.12g. Like Megnetic Lasspit suffers from
over-simplification, which results in a smooth line betweentrol points, but hard corners
at the control points.

GrabCut & GPURW both handle the lack of defined edges more thoroudidy t
the Magnetic Lasspand are able to capture pixel-level edge detail (see FsglirE2b &
4.12c). GPURW does so in about two-thirds the time BeaabCuttakes to attain its
segmentation, and performs faster than any of the otheritiges for this image. Once
again, both methods benefit from the ease of specifying rangjeations of the user’s
desired segmentation. Both algorithms require only a fepliei strokes (in foreground

regions of fine detail) beyond the rough indications to attae segmentations seen.
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() CT Scan

(b) Foreground Probabilities (c) Probability-Based Segmentation

(d) Hard Mask (e) Hard Mask-Based Segmentation

FiG. 4.11. Comparison of returning a matte based solely on ttegyfound probabilities,
versus returning the hard segmentation matte that GPURWhet The results have been
cropped to allow for greater visible distinction. The basage comes from Grady (2006).
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ForPower Maskno additional refining strokes are required beyond theiexpbund-
ary indications (see Figure 4.12h for the segmentation Faguare 4.12k for the boundary
indications). BotHPower Maskand the probability-based masking version of GPURW cap-
ture edge variability that may be preferable for this typendge. Doing so might enable a
doctor to see how confident they should be when operatingeadbfes of a segmentation
region seen for the image. In the event that the distincteiwben the three white segments
and their surroundings equated to healthy versus dise&se@ t much more care would be
needed on the doctor’s part when removing regions wherésthigetwas not solely diseased
(those regions seen in Figures 4.12h & more distinctly irR4ihere the blue background
shows through the segmentation).

Based on the results seen in both Figures 4.9 and 4.12, th&@Rilgorithm is able to
perform segmentations that are comparable to or betterthigaother image segmentation
algorithms. Not only does GPURW produce high-quality seggaigons, but it does so
with real-time interactive feedback, showing the user whatcurrent segmentation looks
like at all stages of the segmentation process. This en@R$RW to produce quality

segmentations more quickly than competitive algorithms.



(e) GrabCut Strokes (f) GPURW Strokes

(g) DFT Snap - 83s (h) DFT Power Mask - 81s (i) GPURW Probability - 113s

FiG. 4.12. Comparisons of different segmentation methods oomped region of a closely

textured CT Scan (the amount of time required for the segatientin seconds is shown

next to the name of the algorithm). The inputs required tateréhe segmentations in their
respective interface are shown immediately below the satatien results. Red strokes
equate to foreground markings, blue to background, andwetpresent explicit-boundary
indications.



Chapter 5

CONCLUSIONS

5.1 Limitations And Future Work

Although the results presented in this thesis are promisingge are several limitations
in the current system. Continued work in these areas coeld gignificant benefit for the

GPURW algorithm. These are detailed as possibilities farruresearch.

5.1.1 EdgeHandling

One of the primary shortcomings of the GPURW algorithm idatk of specialized
handling for transparency along segmentation edges. Semgmentation is based on ap-
proximate convergences, with the result being determiyetidise pixels that have greater
random walkers probabilities for the foreground than far background, GPURW pro-
duces binary segmentations (see Figure 4.11e). Figure 4Hdws that merely using the
probabilities to determine the final matte is not sufficiesihce not all transparency of
objects is desirable. Algorithms such &eft Scissor¢Wang, Agrawala, & Cohen 2007)
could provide additional insight into how to extend GPURWIrtoorporate the necessary

segmentation edge handling.

70



71
5.1.2 Flood Filling

While testing input images such as Figures 4.2 - 4.6 and Eigurl, in which large
areas of the image have the same pixel information (all Madkite / gray), it seemed that
it might be possible to apply a tolerance-based flood-filtmgegions of similar color in a
fashion similar to the seed-filling of Heckbert (1990). Omssibility is to flood-fill seed
points in the region, since all pixels within the given sianity region presumably would
receive the same labeling. This approach presents chabefiog the calculation of and
the preconditioning of the vector, and renders the gap-spanning ability of the random
walkers algorithm useless (as can be seen in Figure 4.1).

An alternative approach would be to use flood-filling for neditioning ther, vector.
Doing so would also need to affect the calculation of some way. Otherwise, the addition
of new refinement seeds might produce no actual changesdedgheentation, sincecould
result in immediate convergence with the better precoomitilz, vector. In either case,
additional research is necessary as to whether GPURW ceulefibfrom the flood-filling
algorithm, and what changes to the calculation @fould be needed to make this a viable

option.

5.1.3 CUDPP Sparse Matrix Vector Multiplication

Although CUDPP provides a general solution to sparse magctor multiplication
on the GPU using CUDA, itis not necessarily the optimal sohutor the class of problems
including GPURW. Zeroing the row, column, and sum valuek far rows / columns where
the sum corresponds to a seed point to prodlgeesults in unnecessary calculations,
which would not be incurred by an ideal sparse matrix stmeciund sparse matrix-vector
multiplication algorithm.

Since certain properties are known about the sparse mafocehe random walker
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algorithm (one primary diagonal, four secondary diagarsisimetric), a specialized algo-
rithm such as the one presented by Grady et al. (2005) migtatdber. Since the matrix is
symmetric, storing all four secondary diagonals is not asagy. Depending on the relative
cost of accessing memory and addition operations, calngltite diagonal at runtime from
gathered secondary diagonals might also speed up perfoewdrnile saving storage. Ulti-
mately, further refinements could be made to matrix-vectdltiplication handling and the
structure used to store the sparse matrix. Since this is & computationally intensive

part of the GPURW algorithm, any improvements would offgngficant benefits.

5.1.4 Different Iterative Solvers

In order to determine if the random walker problem could lhiefim different it-
erative methods, the fixed-point Jacobi, unpreconditio@€&d(conjugate gradient), and
Jacobi preconditioned CG solvers were all implementedceSthe fixed-point Jacobi is
the simplest form of solver, it was the first to be implementat produced the best re-
sults, enabling iterative interaction with the system, #melfewest “stutters” (caused by
computational delays). The Jacobi preconditioned CG sabees also fairly interactive.
As can be seen in Figures 4.1 - 4.6, this solver outperforméixbd-point Jacobi solver in
terms of number of iterations required for reaching a ddssgmentation. With additional
changes to the computation and use othis solver may be the most promising.

Unlike the Jacobi fixed-point and Jacobi preconditioned Gl8ess, the unprecondi-
tioned CG solver presented unexpected results. The exjpecteas that regardless of the
solver being used, the same results would be produced withngacomputation times.
However, it was surprising to find that this solver producedhpletely different results
than the other two. As seen in Figures 5.1a and 5.1b, thelatgdurandom walker proba-
bilities did not match those produced by the other solverstelad, the probabilities had a

noticeable rippling pattern, reminiscent of those seemnhpgebble is dropped into a body
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(a) CG Foreground (b) CG Background (c) CG Segmentation

(d) CG Checkerboard Foregroung) CG Checkerboard Backgroufif CG Checkerboard Segmentation

FIG. 5.1. Use of an unpreconditioned CG solver yielding ripfiieats. Due to convergence
never being reached, an iteration threshalg () of 20 iterations petUpdate was imposed.
Modifying the seed painting brush to paint seeds on a chboked pattern (i.e., no adjacent
seeds), the unpreconditioned CG solver was rendered udabéeto the reduced number
of seeds caused by preventing seed adjacency, the cabcutdti was affected and user-
initiated refinements were necessary.
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of water, with the seed points being the centers of the rigpplhile the reason for these
results remains unclear, disallowing adjacent seeds @ohesproblem. By modifying the
seed-painting brush to only place seeds on a checkerbotistted grid, the rippling ef-
fect went away. Since this constraint also cut the numbeos§ible seeds for the image
in half, modifying the calculation of by replacing|V| with % might yield similar re-
sults to the other solvers, though it was found that merelgking additional user-initiated

refinements produced satisfactory results.

5.2 Conclusion

This thesis has presented GPURW, a fast and accurate $ngtge segmentation al-
gorithm that allows for binary (object / not object) intetige segmentations through an
iterative process. By painting seeds on an underlying im#ge user refines the cur-
rent segmentation by adding, removing, or changing seebighwnoves them towards
their desired segmentation. Through this gradual indbcadif which sections of the image
should be included in the foreground / background segmentgtaccuracy is accumulated
towards the desired result.

Since the random walkers algorithm that GPURW builds upguires solving large
sparse systems of equations, GPURW employs NVIDIAs CURAeterated iterative
solvers to aid in the calculation of the random walker pralitégs. It produces real-time
visual feedback for the current segmentation by utilizinig parallel acceleration, by in-
troducing a novel tolerance calculation, and through tleeaiigrior results to precondition
the iterative solvers. Learning to use the GPURW applicaisosimple and straightfor-
ward, and it produces segmentations that are as good aster thetn those produced by
other binary segmentation methods.

Ultimately, segmentation presents the challenge of findlrgsolution to an under-
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constrained problem. Through GPURW'’s iterative processl w&ith the user’s aid in
indicating what they expect from the segmentation, GPURW®WViges the ability to add

constraints that yield results representative of a pderawser’s desired segmentation.
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