
Triangle Scan Conversion using 2D Homogeneous Coordinates

Marc Olano1 Trey Greer2

University of North Carolina Hewlett-Packard

ABSTRACT

We present a new triangle scan conversion algorithm that works
entirely in homogeneous coordinates. By using homogeneous
coordinates, the algorithm avoids costly clipping tests which
make pipelining or hardware implementations of previous scan
conversion algorithms diff icult. The algorithm handles clipping
by the addition of clip edges, without the need to actuall y split
the clipped triangle. Furthermore, the algorithm can render true
homogeneous triangles, including external triangles that should
pass through infinity with two visible sections. An
implementation of the algorithm on Pixel-Planes 5 runs about
33% faster than a similar implementation of the previous
algorithm.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture - Parallel Processing; I.3.3
[Computer Graphics]: Picture/Image Generation; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Reali sm - Visible
line/surface algorithms.

Additional Keywords: homogeneous coordinates, scan
conversion, rasterization, clipping

1 INTRODUCTION

Homogeneous coordinates are commonly used for
transformations in 3D graphics. They are popular because
rotation, scaling, translation and perspective are all li near in
homogeneous space. As a result, transformations can be
expressed uniformly in matrix form and can be easil y combined
into a single composite matrix. While homogeneous coordinates
are used for 3D transformations, points are converted back to
true 3D after hither clipping. One of the reasons that hither
clipping is required is to avoid singularities in this conversion.

We present a method for triangle scan conversion in which all
computations occur in homogeneous space. In a comparison of
similar implementations of the new algorithm and the previous
algorithm on Pixel-Planes 5 [Fuchs89], the new algorithm ran
about 33% faster.

With the new method, no hither clipping is required at all for
the (rather uninteresting) case using only flat shading and no z-
buffering. Even triangles that touch or cross the camera plane

are rendered correctly.
A hither clip edge must be used when values are interpolated

across the triangle (Z, color, texture coordinates, etc.). Even so,
the algorithm never split s the triangle and does not have to
compute new shading parameter values or vertex locations at the
clipping plane. This is at the “cost” of having to use perspective-
correct interpolation for every parameter.

The new algorithm requires more total operations, due to the
perspective-correct interpolation of all parameters. However,
support for these perspective-correction operations exists in
current hardware. As our tests show, the algorithm can run
faster on actual hardware. The computation required is more
regular than previous algorithms, avoiding costly branches for
clipping. The algorithm allows heavy pipelining of the
transformation and setup processing, and is more amenable to
hardware implementation. As most highly parallel graphics
hardware systems have more processing power at the pixel level
than at the transformation level, and must already handle
perspective correction of texture coordinates, we expect scan
conversion with 2D homogeneous coordinates to be a faster
alternative on a range of hardware graphics systems.

2 PRIOR WORK
Traditional triangle scan conversion algorithms walk along

polygon edges and fill across scan lines. Pineda observed that
these algorithms do not extend well to parallel implementations
[Pineda88].

The Pixel-Planes [Fuchs85] and Pineda [Pineda88] scan
conversion algorithms do paralleli ze well . In both of these
algorithms, each triangle edge is represented by a li near edge
function. The edge function is positi ve inside the edge and
negative outside. Within a triangle, all of the edge functions are
positi ve; outside the triangle, at least one edge function is
negative. Both the Pixel-Planes and Pineda algorithms take
advantage of the li nearity of the edge functions. In the Pixel-
Planes family of graphics systems, a hardware multiplier tree
computes the value of each linear edge function at a large
number of pixels simultaneously. In the Pineda algorithm, the
value of an edge function at a pixel is computed incrementall y,
with a single addition, from the value at the previous pixel.
Both methods compute the coeff icients of the edge function from
the 2D screen coordinates in the same way. For the edge between
(Xi-1, Yi-1) and (Xi, Yi), the edge function Ei is computed as

dXi = Xi – Xi-1

dYi = Yi – Yi-1

Ei(X, Y) = (X – Xi) dXi – (Y – Yi) dYi

Similar equations are used to compute the coeff icients for li near
functions to interpolate parameters across the triangle (color,
texture coordinates, etc.). Hidden in these equations are the
divisions required to project each of the three vertices onto the
screen and another division required to normali ze the parameter
interpolation equations. The new algorithm computes equivalent
edge functions and parameter interpolation functions using 2D
homogeneous screen coordinates without computing the actual
screen coordinates.

1olano@cs.unc.edu
2greer@chapelhill.hp.com

The new algorithm can be derived from the 2D equivalent to
the 3D homogeneous point-in-tetrahedron test given by Nii zeki
[Nii zeki94]. In this test, a 3D point is in a tetrahedron if it
passes four 4x4 determinant tests. That is (x, y, z, w) is in the
tetrahedron defined by four points, (xi, yi, zi, wi), when these four
determinants all have the same sign:

x x1 x2 x3

y y1 y2 y3

z z1 z2 z3

w w1 w2 w3

 ,

x0 x x2 x3

y0 y y2 y3

z0 z z2 z3

w0 w w2 w3

 ,

x0 x1 x x3

y0 y1 y y3

z0 z1 z z3

w0 w1 w w3

 ,

x0 x1 x2 x
y0 y1 y2 y
z0 z1 z2 z
w0 w1 w2 w

We can derive a similar 2D point-in-triangle test using three 3x3
determinant tests. The result of each edge function at a pixel is
equivalent to (and with the right scaling, equal to) the result of
one of the determinants. The edge function form is superior for
incremental evaluation. Nii zeki also gives a point-in-polygon
test, but it is not appropriate for our purposes as it is for 3D
points in 3D polygons.

Blinn noted the possibilit y of scan converting without hither
clipping, though he still suggested operating in non-homogeneous
space for the actual scan conversion [Blinn96b].

3 HOMOGENEOUS COORDINATES

3.1 Notation

A point in 3-space, P = (X, Y, Z), is represented in homogeneous
coordinates by the four element vector, p = (X, Y, Z, 1). Any
non-zero multiple of this homogeneous vector represents the
same point in 3-space. Similarly, there are non-homogeneous, P
= (X, Y), and homogeneous, p = (x, y, w), representations of
points in 2-space. Notice that while 3D non-homogeneous and
2D homogeneous representations both have three components,
they represent points in different spaces. Except when converting
between representations, we will write points in non-
homogeneous coordinates in upper case and points in
homogeneous coordinates in lower-case. We will also use
different fonts for 2D and 3D points.

To convert a non-homogeneous representation to a
homogeneous representation, append a w coordinate of 1, (X, Y,
Z) ⇒ (X, Y, Z, 1) or (X, Y) ⇒ (X, Y, 1). To convert a
homogeneous representation to a non-homogeneous
representation, divide each component by w, (x, y, z, w) ⇒ (x/w,
y/w, z/w) or (x, y, w) ⇒ (x/w, y/w). This is called the projection
of the homogeneous point. The representations and conversions
are summarized in Table 1.

3.2 Homogeneous triangles

A triangle can be defined as a weighted linear combination of
three vertices [Niizeki94]. In homogeneous coordinates:

p = λ0 p0 + λ1 p1 + λ2 p2

(where the λ’ s have the same sign and at least one is non-zero).
This definiti on holds whether the points are 2D or 3D. If the w
components of all three vertices have the same sign, the result is
the bounded triangle we normall y expect. However, if the w
components do not all have the same sign, the result is an
external triangle, that wraps through infinity to connect the
vertices (Figure 1).

To understand the connection between 2D homogeneous
triangles and 3D triangles, we will l ook at a single 3D triangle
and its projection onto the screen. For simpli city, we will define
the triangle in canonical eye space. In canonical eye space, the
center of projection is at the origin, the direction of projection is
aligned down the Z axis, and the field of view is 90 degrees. In
this space, perspective projection can be achieved simply by
dividing by Z. In other words, to project the 3D point (X, Y, Z),
set x = X, y = Y, and w = Z to get the 2DH point (x, y, w). Figure
2 and Figure 3 show a triangle with two vertices in front of the
eye as the Z coordinate of the third vertex changes. Figure 4
shows a triangle with one vertex in front of the eye as the Z
coordinate of the other two change.

4 PERSPECTIVE-CORRECT
INTERPOLATION

Before attacking the full scan conversion problem, consider the
equations for perspective-correct interpolation across a triangle.
This is called hyperbolic interpolation by Blinn [Blinn96b] and
rational linear interpolation by Heckbert [Heckbert89].

4.1 Interpolation function

If some parameter (say the u texture coordinate) is to vary
linearly across the triangle in 3D (i.e. across the object itself), it
must obey this equation:

u = a X + b Y + c Z (1)

The 3D position (X, Y, Z) projects to 2D, using the 2D
homogeneous representation (x, y, w) where x = X, y = Y, w = Z.
This allows us to rewrite equation 1 to hold in 2D homogeneous
space:

u = a x + b y + c w (2)

Division by w produces the famili ar 2D perspective-correct
interpolation equation [Blinn96b, Heckbert89]:

u/w = a x/w + b y/w + c = a X + b Y + c (3)

This says that u/w is a li near function in the screen space (X, Y).
The coeff icients a, b, and c are the same equations 1, 2 and 3.

w > 0

w > 0

w < 0

Figure 1: An example of an external triangle. Both
shaded regions are part of a single external triangle.

non-homogeneous homogeneous

2D P = (X, Y)
= (x/w, y/w)

p = (x, y, w)
= (X, Y, 1)

3D P = (X, Y, Z)
= (x/w, y/w z/w)

p = (x, y, z, w)
= (X, Y, Z, 1)

Table 1: 2D and 3D homogeneous and non-
homogeneous point representations, and the
conversions between them.

Given a value for u at each vertex (e.g. the parameter vector [u0

u1 u2]), we can solve for [a b c] using equation 2:

[a b c] = [uo u1 u2]






x0 x1 x2

y0 y1 y2

w0 w1 w2

-1

 = [uo u1 u2] M -1 (4)

Consider the impli cations of this result. We can invert one 3x3
matrix, which depends only on the vertex locations before
perspective projection. Then computation of the coeff icients for
perspective-correct interpolation requires just one 3x3 vector-
matrix multiply per parameter to interpolate.

w = 0

w = 1

w = ∞

a)

b)

Z = 0

0 < Z < 1

c)

d)

Z = 1

Z = ∞

0 < w < 1

Figure 2: Views of what happens to a triangle as one of
the vertices moves in Z. For each case, a side view and
a view of the resulting image are shown. The heavy
dashed line shows the path followed by the moving
vertex. a) The top vertex is infinitely far away. It
projects to the center of projection. b) The vertex is at
a “normal” distance in front of the eye. c) The vertex
is still in front of the eye but out of the viewing
frustum. d) The vertex is even with the eye, which
maps it to a point “at infinity” in the image plane.

w < 0

w < 0

w = -∞

w < 0

a)

Z < 0

Z < 0

b)

Z < 0

Z = -∞

d)

c)

Figure 3: More views of what happens to a triangle as
one of the vertices moves in Z. a) The vertex has
moved behind the eye. The displayed projection is one
part of an “external” triangle. b) The plane of the
triangle passes through the eye, so nothing is visible.
c) The triangle has passed completely through the eye,
now we see the back. d) The vertex is infinitely far
behind the eye. The projection of the vertex is again at
the vanishing point, but we see part of an external
triangle now.

The coeff icients are derived directly from the homogeneous
coordinates of the vertices. Since they are based on the 2DH
coordinates and not the 3D coordinates, they are independent of
the 3D point representation. In particular, the parameter
interpolation will still work even if the original vertices were 3D

homogeneous coordinates with arbitrary w components (as might
result from rational splines).

4.2 Perspective correction

Since we never divide by w for any of the vertices, we avoid the
usual troubles when w is zero or negative which necessitate
costly clipping operations. The coeff icient computations are
independent of any clipping required for scan conversion, and do
not require computation of the values of each parameter at the
clip points, even if the triangle crosses behind the eye. These
coeff icients can be used for parameter interpolation with any
scan conversion technique, either by direct evaluation of the
linear expression (as is done on the Pixel-Planes hardware) or
incrementally.

As this is a perspective-correct interpolation, the result at each
pixel is u/w. To recover the true parameter value, it is necessary
to also interpolate 1/w. Once per pixel, we take the reciprocal,
then per parameter perform a multipli cation of the form (u/w) *
w. Coeff icients for 1/w can be computed using the parameter
vector [1 1 1] (giving the sum of the columns of M-1).

There are several reasons that we do not mind this extra per-
pixel computation. First, perspective correction is already
required for texture coordinates, including interpolation of 1/w
and its reciprocal. Second, all cli pping and projection are
deferred from computations at the vertices, where they are
diff icult, to computations at the visible pixels, where they are
easy. This makes both the pixel-level and transformation and
setup-level processing simpler. Third, graphics hardware
typicall y has many fewer processors devoted to transformations,
clipping, and setup than pixel computations, making the
eff iciency of the former much more criti cal. Finall y, our
particular hardware implementation avoids most of the per-pixel
costs by using deferred shading.

5 SCAN CONVERSION

5.1 Edge function

The coeff icient computations for parameter interpolation can be
extended to complete triangle scan conversion. Following the
Pixel-Planes and Pineda algorithms [Fuchs85, Pineda88], we
compute a li near function for each edge of the triangle. This
function is positi ve on inside of the edge and negative on the
outside. Since both the edge function and parameter
interpolation functions are li near, the edge function is just a
parameter interpolation function for some pseudo-parameter.
For each edge, we define a pseudo-parameter that is zero at the
two vertices on the edge and one at the opposite vertex. From
equation 4, it is apparent that the edge parameter vectors [1 0 0],
[0 1 0], and [0 0 1] simply pick rows out of the inverse matrix.

Examining the edge functions just defined and the determinant
tests of [Nii zeki94], we can show that they are different
formulations for the same test. For the pixels in the part of the
triangle we usuall y want to render, all of the edge functions are
positi ve* . We can use this fact to create an eff icient scan
converter that renders triangles without every doing any clipping.
All visible portions of the triangles have positi ve results on all of

* If we have an external triangle and want to render both parts,
we include the region where all of the edge functions are
negative. For pixels completely outside both portions of the
triangle, the edge functions will have different signs.

w = 1

w = 1

w = 0

Z = 1
for all
vertices

Z = 0

Z = 0

w < 0

w < 0

w = 1

w = 0

b)

a)

Z < 0

Z < 0

Z < 0

Z < 0

d)

w < 0

c)

w < 0

Figure 4: Views of what happens to a triangle if two
vertices pass behind the eye while the other remains in
front. Once again, a side view and the resulting
projection are shown. The lines indicating the path of
the vertices are left out of the side view for clarity, but
still appear in the projected view. a) All vertices are in
front of the eye. This is the same as Figure 2b. b) both
vertices are in the plane of the eye. They project to
infinity in different directions. c) The plane of the
triangle passes through the eye so nothing is visible. d)
Both vertices are behind the eye. What is visible is
part of an external triangle, but the “other half” from
what was visible in Figure 3a, c, and d.

their edge functions. Whole or partial triangles behind the eye
have negative results on their edge functions.

5.2 Zero-area and back facing triangles

Computation of the 3x3 matrix inverse requires division by the
3x3 determinant of M. This might cause some concern, as
sometimes the matrix inverse will not exist. In 3D, a matrix
determinant gives twice the signed volume of a tetrahedron. In
eye space, this is the tetrahedron with the eye at the apex and the
triangle to be rendered as the base. If all of the 2D w coordinates
are 1, the determinant is also exactly twice the signed screen-
space area of the triangle. If the determinant is zero, either the
triangle is degenerate or the view is edge-on (Figure 2b and
Figure 4c).

So, if the M-1 does not exist, the triangle should not be
rendered anyway. Furthermore, for vertices defined by the right-
hand rule, the determinant is positi ve if the triangle is front-
facing and negative if the triangle is back-facing.

For numerical accuracy, we actuall y throw away triangles with
suff iciently small determinants as well as the ones with zero
determinants. To avoid loosing large meshes of very small
triangles, we snap the 2D homogeneous coordinates of the
vertices to a fine grid (you can think of this as a 3D grid in
canonical eye space). This retains the mesh connectivity, but
forces the small t riangles to either snap to zero area or to a size
large enough to render.

5.3 Arbitrary clip planes

To add arbitrary clip planes, we compute new clip edge
functions. We only need the new edge functions, we do not
actuall y find the clip vertices. The pseudo-parameter vector for a
clip edge function is just the dot product test normall y used for
determining which vertices are inside or outside the clip plane
[Cyrus78]. It is li near, positi ve for unclipped points, negative for
clipped points, and zero along the clipping plane itself. The
parameter vector [c0 c1 c2] for a clip plane with normal N = [Nx

Ny Nz] and containing the point Pc is

[c0 c1 c2] = [Nx Ny Nz N⋅Pc]









x0 x1 x2

y0 y1 y2

z0 z1 z2

w0 w1 w2

Usuall y, this dot product is simpli fied to take advantage of the
known simple values of N and Pc. We use this method to create
a hither edge function.

Scan conversion of the triangle edges works without clipping.
We have implemented a scan converter on Pixel-Planes 5
[Fuchs89] that renders flat shaded non-z-buffered triangles with
no clipping at all . Computation of coeff icients for parameter
interpolation also works without clipping. However, for triangles
that pass near the eye, the parameter interpolation can overflow.
This is true even if the parameter itself is well defined. For
example, even if u doesn’ t overflow, u/w and 1/w may. The
hither edge masks out regions where parameters might overflow.

With the use of a hither edge, our implementation is able to
use fixed point to store interpolated values li ke 1/w. With the
hither plane we can safely use the full fixed-point range, with
1/w reaching the maximum representable value exactly on the
hither plane.

6 UNCORRECTED INTERPOLATION

So far, we have only discussed perspective-correct interpolation.
In fact we use only perspective-correct interpolation. In
traditional scan conversion, it has been common to interpolate
parameters li nearly in screen space. This produces some
distortions which prevent uncorrected interpolation from working
for texture coordinates, but avoids the per-pixel divide required
by the correction process. We can derive coeff icients for
uncorrected interpolation:

u = a X + b Y + c = a x/w + b y/w + c
u w = a x + b y + c w (5)

Equation 5 is now in same form as equation 4. Therefore, a
parameter vector [u0w0 u1w1 u2w2] can be used to compute the
coeff icients for uncorrected interpolation. Alternately, a new
matrix can be created and used for all uncorrected interpolation:

[a b c] = [uo u1 u2]














w0 0 0

0 w1 0
0 0 w2







x0 x1 x2

y0 y1 y2

w0 w1 w2

-1

Unli ke perspective-correct interpolation, uncorrected
interpolation does not work without expli cit clipping. In any
external triangle (including any triangle crosses behind the eye),
we also get an external interpolation. For example, to
interpolate between 0 and 1, the parameter value starts at 0, goes
negative, and wraps through infinity to get to 1. To avoid this, it
is necessary to do full cli pping on all t riangles to avoid ever
rendering external triangles.

As a result, uncorrected interpolation requires more setup and
complicates the setup processing. For this reason, we only use
perspective-correct interpolation.

7 IMPLEMENTATION

7.1 Pixel-Planes 5

As mentioned earlier, we have implemented the 2D
homogeneous scan conversion algorithm on the Pixel-Planes 5
graphics system (Figure 5). Pixel-Planes 5 has a number of
graphics processors, responsible for geometric transformations
and rendering setup computation, and a number of renderers,

Graphics
Processor

Renderer

Renderer

Frame
Buffer

Graphics
Processor

Host

Figure 5: Pixel-Planes 5 block diagram [Fuchs89].
Graphics Processors are Intel i860 microprocessors,
Renders are 128x128 custom SIMD arrays.

responsible for scan conversion and shading. Each graphics
processor uses a general purpose Intel i860 processor for
geometric transformations and rendering setup computations.
Each renderer has a 128x128 SIMD array with a li near
expression tree capable of simultaneously evaluating the results
of a linear expression across the entire 128x128 array.

Pixel-Planes 5 is a good machine to take advantage of the 2D
homogeneous scan conversion algorithm. The processors it uses
for transformation and setup use pipelined floating point, but are
not very eff icient for code with lots of branching. In fact, the
algorithm would work well on a machine with an even deeper
floating point pipeline. The processors it uses for rasterization
include a li near expression tree, which makes evaluation of
edges and interpolation functions particularly easy. They also
have enough memory per-pixel (208 bits) to store all the
parameters needed for shading, allowing us to use deferred
shading. This means that we rasterize all of the parameters used
for shading, but don’ t do the shading computations until all
primiti ves have been rasterized. As a result, the reciprocal and
multipli cations necessary to recover the true parameter values (as
well as the rest of the shading computations) are only done for
the visible pixels instead of for every pixel of every primiti ve.
Deferred shading also gives 100% utili zation of the SIMD
processor arrays during the perspective correction and shading
computations.

7.2 Edge function normalization

Because the Pixel-Planes 5 li near expression tree evaluates
expressions for all pixels in a 128x128 region, our
implementation uses an extra edge normali zation that would not
be required in an incremental algorithm. For incremental scan
conversion [Pineda88], we would only evaluate the edge
functions inside or near the triangle, so the addition of a hither
plane can prevent their overflow. For Pixel-Planes style scan
conversion, the edge functions are evaluated at many pixels
simultaneously, some of which may be far outside the triangle.
This is only a concern for the edge functions, not the parameter
interpolation. Parameter values outside the triangle are not used,
so it doesn’t matter if they overflow there.

Since only the sign of each edge function matters, we can scale
each edge to avoid overflow within the screen boundaries. Any
scaling factor will do, as long as it can be guaranteed to bound
the range of the edge function within one screen regions. In the
Pixel-Planes 5 implementation, we used the simple but
somewhat expensive 1/(|a| + |b|). An optimized version would
probably prefer to use a power of two scaling factor, which

would require only exponent addition for floating point or shifts
for fixed point representations of the edge function coefficients.

Certain anti-aliasing algorithms (not used in our
implementation) require the distance of pixels from the edge.
For these, the distance can be computed exactly, using an edge
function normalized by 1/ (a2 + b2) .

7.3 Binning

Pixel-Planes 5 uses screen-space subdivision to allocate screen
area to the SIMD rendering blocks. While the algorithm behaves
correctly if a renderer attempts to scan convert a triangle that
does not land in its screen region, it does waste time that could
be used rendering other triangles. To get maximum processor
utili zation, we need to make good estimates of the region
coverage of each triangle. Binning is the job of finding the
regions that contain part of the triangle.

For the implementation we used for performance testing, we
simply used an axis-aligned bounding box around the triangle for
binning. Computing bounding boxes from pre-projection
homogeneous coordinates is covered by Blinn in [Blinn96a].
However, particularly for triangles with high aspect ratios, the
axis aligned bounding box can seriously overestimate the number
of regions covered (Figure 6). This problem is becoming more
serious, as region sizes shrink to increase processor utilization.

We can compute the exact binning, while still using only
homogeneous coordinates. The exact binning algorithm relies on
homogeneous point-inside-edge tests and edge-edge intersection
tests. The point-inside-edge test is just the edge function
evaluated at the point. The edge-edge intersection test is made
up of four point-inside-edge tests. The two end-points of the first
edge must be on opposite sides of the second edge, while the two
end-points of the second edge must be on opposite sides of the
first.

A triangle intersects a region if
a) A triangle vertex is inside the region.
b) A region corner is inside the triangle.
c) A region edge intersects a triangle edge.

Since the region edges and corners are spaced evenly, all of
the tests involved can be evaluated incrementall y. For further
savings, we can use a recursive quad-tree approach. Each
subdivision of a quad-tree cell requires only seven adds per
triangle vertex.

7.4 Performance results

We tested the performance of a C implementation of the new
algorithm against the C code version of the Pixel-Planes triangle
scan conversion algorithm. We ran our test on a scene consisting
of a spinning teapot (Figure 7, Table 2).

The production version of the Pixel-Planes triangle rasterizer
is written in i860 assembler. That version has undergone
extensive profili ng and optimization, resulting in significant
speedup over the original C code (performing about 18,000
triangles per second on the machine configuration used for these
tests). Thus far, we have only produced a C code version of the
new algorithm, so we made our timing comparisons against the C
code version of the previous algorithm. We are confidant that an
optimized version of the new algorithm would be faster than the

Figure 6: A hard triangle to bin correctly. An axis-
aligned bounding box binner would attempt to scan
convert the triangle in every region on the screen when
it really only lands in the shaded regions.

Pixel-Planes
algorithm

Homogeneous
algorithm

1488 tri/sec 2075 tri/sec
Table 2: Performance results

optimized version of the old algorithm since the new algorithm is
simpler, with fewer special cases, and consists primaril y of easy-
to-pipeline vector-matrix multiplies.

8 CONCLUSIONS

We have shown a new algorithm for triangle scan conversion for
parallel graphics hardware. The algorithm only needs one
reciprocal operation during the setup computations, and that one
is only undefined when the triangle should not be drawn anyway.
In contrast, the previous algorithms required four reciprocals
during setup. One is the reciprocal of the screen space area of
the triangle, and well -defined for all rendered triangles; but the
other three are for perspective projection of the three vertices,
and can be undefined even for visible triangles. It is these
reciprocals that force the previous algorithms to do hither
clipping. Our algorithm avoids triangle clipping and the pipeline
inefficiencies it causes.

The remainder of the setup computations for our algorithm are
simple matrix arithmetic and easil y pipelined. Linear
interpolation functions are used for all scan conversion and
parameter interpolation. These functions are well suited to
parallel hardware evaluation or cheap incremental scan line
evaluation. For perspective correction, we require one
reciprocal per visible pixel in the triangle (which is well -defined
in the triangle’s domain) and one multiply per parameter per
pixel.

The setup computation consists primaril y of independent
vector-matrix multiplies, with one reciprocal required. The pixel
computation consists primaril y of li near interpolation and
multipli cation, with one reciprocal required. Both parts are well
suited for use with deep floating point or arithmetic pipelines or
for hardware implementation or acceleration.

To summarize the algorithm:
setup:

three edge functions = M-1 = inverse of 2D homogeneous
vertex matrix

for each clip edge
clip edge function = dot product test * M-1

interpolation function for 1/w = sum of rows of M-1

for each parameter
interpolation function = parameter vector * M-1

pixel processing:
interpolate linear edge and parameter functions

where all edge functions are positive
w = 1/(1/w)
for each parameter

perspective-correct parameter = parameter * w

We have implemented a preliminary version of the algorithm in
C code, running on the Pixel-Planes 5. The results from this test
are positi ve, showing a definite improvement over comparable
code for the previous algorithm. Based on these results, we plan
to use this algorithm in future hardware systems.

9 ACKNOWLEDGMENTS

We would li ke to thank the generous support of the Hewlett-
Packard Corporation, the DARPA Order Number A410, and NSF
grant number MIP-9306208.

REFERENCES
[Blinn96a] James Blinn, “Jim Blinn’s Corner: Calculating

Screen Coverage”, IEEE Computer Graphics &
Applications, v16n3 (May 1996), IEEE Computer Society,
Los Alamitos, CA, 1996.

[Blinn96b] James Blinn, Jim Blinn’s Corner: A Trip Down
the Graphics Pipeline, Morgan Kaufmann, 1996.

[Cyrus78] M. Cyrus and J. Beck, “Generalized Two- and
Three-Dimensional Clipping”, Computers and Graphics,
v3, 1978.

[Fuchs85] Henry Fuchs, Jack Goldfeather, Jeff Hultquist,
Susan Spach, John Austin, Frederick Brooks, Jr., John Eyles
and John Poulton, “Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-Planes”,
Proceedings of SIGGRAPH ‘85 (San Francisco, CA, July
22–26, 1985). In Computer Graphics, v19n3 (July 1985),
ACM SIGGRAPH, New York, NY, 1985.

[Fuchs89] Henry Fuchs, John Poulton, John Eyles, Trey
Greer, Jack Goldfeather, David Ellsworth, Steve Molnar,
Greg Turk, Brice Tebbs and Laura Israel, “Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System Using
Processor-Enhanced Memories”, Proceedings of
SIGGRAPH ‘89 (Boston, MA, July 31–August 4, 1989). In
Computer Graphics, v23n3 (July 1989), ACM SIGGRAPH,
New York, NY, 1989.

[Heckbert89] Paul Heckbert, “Fundamentals of Texture
Mapping and Image Warping”, Master’s Thesis,
Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA, 1989

[Niizeki94] Masatoshi Niizeki and Fujio Yamaguchi,
“Projectively Invariant Intersection Detections for Solid
Modeling”, ACM Transactions on Graphics, v13n3 (July
1994), ACM SIGGRAPH, New York, NY, 1994.

[Pineda88] Juan Pineda, “A Parallel Algorithm for Polygon
Rasterization”, Proceedings of SIGGRAPH ‘88 (Atlanta,
GA, August 1–5, 1988). In Computer Graphics, v22n4
(August 1988), ACM SIGGRAPH, New York, NY, 1988.

Figure 7: Image from the spinning teapot
performance test.

