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Abstract

We describe the new data-intensive research paradigm 
that astronomy and astrophysics is now entering. This is 
described within the context of the largest data-producing 
astronomy project in the coming decade – the LSST 
(Large Synoptic Survey Telescope). The enormous data 
output, database contents, knowledge discovery, and 
community science expected from this project will impose 
massive data challenges on the astronomical research 
community.  One of these challenge areas is the rapid 
machine learning, data mining, and classification of all 
novel astronomical events from each 3-gigapixel (6-GB)
image obtained every 20 seconds throughout every night 
for the project duration of 10 years. We describe these 
challenges and a particular implementation of a 
classification broker for this data fire hose.

1. Introduction

The development of models to describe and understand 
scientific phenomena has historically proceeded at a pace 
driven by new data.  The more we know, the more we are 
driven to tweak or to revolutionize our models, thereby 
advancing our scientific understanding. This data-driven 
modeling and discovery linkage has entered a new 
paradigm [1].  The acquisition of scientific data in all 
disciplines is now accelerating and causing a nearly 
insurmountable data avalanche [2]. In astronomy in 
particular, rapid advances in three technology areas 
(telescopes, detectors, and computation) have continued 
unabated – all of these advances lead to more and more 
data [3]. With this accelerated advance in data generation 
capabilities, humans will require novel, increasingly 
automated, and increasingly more effective scientific 
knowledge discovery systems [4].

To meet the data-intensive research challenge, the 
astronomical research community has embarked on a 
grand information technology program, to describe and 
unify all astronomical data resources worldwide.  This 
global interoperable virtual data system is referred to as 
the National Virtual Observatory (NVO) in the U.S., or 
more simply the “Virtual Observatory” (VO). Within the 
international research community, the VO effort is steered 
by the International Virtual Observatory Alliance (IVOA). 

This grand vision encompasses more than a collection of 
data sets. The result is a significant evolution in the way 
that astrophysical research, both observational and 
theoretical, is conducted in the new millennium [5].  This 
revolution is leading to an entirely new branch of 
astrophysics research – Astroinformatics – still in its 
infancy, consequently requiring further research and 
development as a discipline in order to aid in the data-
intensive astronomical science that is emerging [6].

The VO effort enables discovery, access, and 
integration of data, tools, and information resources across 
all observatories, archives, data centers, and individual 
projects worldwide [7].  However, it remains outside the 
scope of the VO projects to generate new knowledge, new 
models, and new scientific understanding from the huge 
data volumes flowing from the largest sky survey projects 
[8, 9].  Even further beyond the scope of the VO is the 
ensuing feedback and impact of the potentially 
exponential growth in new scientific knowledge 
discoveries back onto those telescope instrument 
operations.  In addition, while the VO projects are
productive science-enabling I.T. research and
development projects, they are not specifically scientific 
research projects.  There is still enormous room for 
scientific data portals and data-intensive science research 
tools that integrate, mine, and discover new knowledge 
from the vast distributed data repositories that are now 
VO-accessible [4].

The problem therefore is this: astronomy researchers 
will soon (if not already) lose the ability to keep up with 
any of these things: the data flood, the scientific 
discoveries buried within, the development of new models 
of those phenomena, and the resulting new data-driven 
follow-up observing strategies that are imposed on 
telescope facilities to collect new data needed to validate 
and augment new discoveries.

2. Astronomy Surveys as Data Producers

A common feature of modern astronomical sky surveys 
is that they are producing massive (terabyte) databases.  
New surveys may produce hundreds of terabytes (TB) up 
to 100 (or more) petabytes (PB) both in the image data 



archive and in the object catalogs (databases). Interpreting 
these petabyte catalogs (i.e., mining the databases for new 
scientific knowledge) will require more sophisticated 
algorithms and networks that discover, integrate, and learn 
from distributed petascale databases more effectively.

2.1. The LSST Sky Survey Database

One of the most impressive astronomical sky surveys 
being planned for the next decade is the Large Synoptic 
Survey Telescope project (LSST, http://www.lsst.org/)
[10].  The three fundamental distinguishing astronomical 
attributes of the LSST project are: 
(1) Repeated temporal measurements of all observable 

objects in the sky, corresponding to thousands of 
observations per each object over a 10-year period, 
expected to generate 10,000-100,000 alerts each night 
– an alert is a signal (e.g., XML-formatted RSS feed) 
to the astronomical research community that something 
has changed at that location on the sky: either the 
brightness or position of an object, or the serendipitous 
appearance of some totally new object;

(2) Wide-angle imaging that will repeatedly cover most of 
the night sky within 3 to 4 nights (= tens of billions of 
objects); and 

(3) Deep co-added images of each observable patch of sky 
(summed over 10 years: 2014-2024), reaching far 
fainter objects and to greater distance over more area 
of sky than other sky surveys [11]. 

Compared to other astronomical sky surveys, the LSST 
survey will deliver time domain coverage for orders of 
magnitude greater number of objects. It is envisioned that 
this project will produce ~30 TB of data per each night of 
observation for 10 years.  The final image archive will be 
~60 PB, and the final LSST astronomical object catalog 
(object-attribute database) is expected to be ~10-20 PB.  

2.2. The LSST Data-Intensive Science Challenge

LSST is not alone.  It is one (likely the biggest one) of 
several large astronomical sky survey projects beginning 
operations now or within the coming decade.  LSST is by 
far the largest undertaking, in terms of duration, camera 
size, depth of sky coverage, volume of data to be 
produced, and real-time requirements on operations, data 
processing, event-modeling, and follow-up research 
response.  One of the key features of these surveys is that 
the main telescope facility will be dedicated to the primary 
survey program, with no specific plans for follow-up 
observations.   This is emphatically true for the LSST 
project [12].  Paradoxically, the follow-up observations 
are scientifically essential – they contribute significantly 
to new scientific discovery, to the classification and 
characterization of new astronomical objects and sky 

events, and to rapid response to short-lived transient sky 
phenomena.

Since it is anticipated that LSST will generate many 
thousands (probably tens of thousands) of new 
astronomical event alerts per night of observation, there is 
a critical need for innovative follow-up procedures.  These 
procedures necessarily must include modeling of the 
events – to determine their classification, time-criticality, 
astronomical relevance, rarity, and the scientifically most 
productive set of follow-up measurements.  Rapid time-
critical follow-up observations, with a wide range of time 
scales from seconds to days, are essential for proper 
identification, classification, characterization, analysis, 
interpretation, and understanding of nearly every 
astrophysical phenomenon (e.g., supernovae, novae, 
accreting black holes, microquasars, gamma-ray bursts, 
gravitational microlensing events, extrasolar planetary 
transits across distant stars, new comets, incoming 
asteroids, trans-Neptunian objects, dwarf planets, optical 
transients, variable stars of all classes, and anything that 
goes “bump in the night”).

2.3. Petascale Data Mining with the LSST

LSST and similar large sky surveys have enormous 
potential to enable countless astronomical discoveries.  
Such discoveries will span the full spectrum of statistics: 
from rare one-in-a-billion (or one-in-a-trillion) type 
objects, to a complete statistical and astrophysical 
specification of a class of objects (based upon millions of 
instances of the class).  One of the key scientific 
requirements of these projects therefore is to learn rapidly 
from what they see. This means: (a) to identify the 
serendipitous as well as the known; (b) to identify outliers 
(e.g., “front-page news” discoveries) that fall outside the 
bounds of model expectations; (c) to identify rare events 
that our models say should be there; (d) to find new 
attributes of known classes; (e) to provide statistically 
robust tests of existing models; and (f) to generate the 
vital inputs for new models.  All of this requires 
integrating and mining of all known data: to train 
classification models and to apply classification models.

LSST alone is likely to throw such data mining and 
knowledge discovery efforts into the petascale realm.  For 
example: astronomers currently discover ~100 new 
supernovae (exploding stars) per year. Since the beginning 
of human history, perhaps ~10,000 supernovae have been 
recorded.  The identification, classification, and analysis 
of supernovae are among the key science requirements for 
the LSST Project to explore Dark Energy – i.e., 
supernovae contribute to the analysis and characterization 
of the ubiquitous cosmic Dark Energy.  Since supernovae 
are the result of a rapid catastrophic explosion of a 



massive star, it is imperative for astronomers to respond 
quickly to each new event with rapid follow-up 
observations in many measurement modes (light curves; 
spectroscopy; images of the host galaxy’s environment).  
Historically, with <10 new supernovae being discovered 
each week, such follow-up has been feasible.  But now, 
LSST promises to produce a list of 1000 new supernovae 
each night for 10 years [11], which represent a small 
fraction of the total (10-100 thousand) alerts expected 
each night! Astronomers are faced with the enormous 
challenge of efficiently mining, correctly classifying, and 
intelligently prioritizing a staggering number of new 
events for follow-up observation each night for a decade.

3. A Classification Broker for Astronomy

We are beginning to assemble user requirements and 
design specifications for a machine learning engine (data 
integration network plus data mining algorithms) to 
address the petascale data mining needs of the LSST and 
other large data-intensive astronomy sky survey projects.
The data requirements surpass those of the current Sloan 
Digital Sky Survey by 1000-10,000 times, while the time-
criticality requirement (for event/object classification and 
characterization) drastically drops from months down to 
minutes (or tens of seconds). In addition to the follow-up 
classification problem (described above), astronomers 
also want to find every possible new scientific discovery 
(pattern, correlation, relationship, outlier, new class, etc.) 
buried within these new enormous databases. This might 
lead to a petascale data mining compute engine that runs 
in parallel alongside the data archive, testing every 
possible model, association, and rule.  What we are 
focusing on here is the time-critical data mining engine 
(i.e., classification broker) that enables rapid follow-up 
science for the most important and exciting astronomical 
discoveries of the coming decade, on a wide range of time 
scales from seconds to days, corresponding to a plethora 
of exotic astrophysical phenomena.

3.1. Broker Specifications: AstroDAS

The classification broker’s primary specification is to 
produce and distribute scientifically robust near-real-time 
classification of astronomical sources, events, objects, or 
event hosts.  These classifications are derived from 
integrating and mining data, information, and knowledge 
from multiple distributed data repositories. The broker
feeds off existing robotic telescope and astronomical alert 
networks world-wide, and then integrates existing 
astronomical knowledge (catalog data) from the VO. The 
broker may eventually provide the knowledge discovery 
and classification service for LSST, a torrential fire hose 
of data and astronomical events.

Incoming event alert data will be subjected to a suite of 
machine learning (ML) algorithms for event classification, 
outlier detection, object characterization, and novelty 
discovery.  Probabilistic ML models will produce rank-
ordered lists of the most significant and/or most unusual 
events.  These ML models (e.g., Bayesian networks, 
decision trees, multiple weak classifiers, Markov models, 
or perhaps scientifically derived similarity metrics) will be 
integrated with astronomical taxonomies and ontologies 
that will enable rapid information extraction, knowledge 
discovery, and scientific decision support for real-time 
astronomical research facility operations – to follow up on 
the 10-100K alertable astronomical events that will be 
identified each night for 10 years by the LSST sky survey.

 The classification broker will include a 
knowledgebase to capture the new labels (tags) that are 
generated for the new astronomical events.  These tags are 
annotations to the events. “Annotation” refers to tagging 
the data and metadata content with descriptive terms. For 
this knowledgebase, we envision a collaborative tagging 
system, called AstroDAS (Astronomy Distributed 
Annotation System) [13]. AstroDAS is similar to existing 
science knowledgebases, such as BioDAS [14], 
WikiProteins [15], the Heliophysics Knowledgebase 
(HPKB) [16], and The Entity Describer [17].  AstroDAS 
is “distributed” in the sense that the source data and 
metadata are distributed, and the users are distributed.  
“Annotation” refers to tagging the data and metadata 
content with descriptive terms, which apply to individual 
data granules or to subsets of the data.  It is a “system” 
with a unified schema for the annotation database, where 
distributed data are perceived as a unified data system to 
the user. One possible implementation of AstroDAS could 
be as a Web 2.0 (=Science2.0) mashup.  AstroDAS users
will include providers (authors) and annotation users 
(consumers).  Consumers (humans or machines) will 
eventually interact with AstroDAS in four ways:
1. Integrate the annotation database content with their

own data portals.
2. Subscribe to receive notifications when new sources 

are annotated or classified. 
3. Use the classification broker as a data integration tool 

to broker classes and annotations between sky surveys, 
robotic telescopes, and data repositories.

4. Query the annotation database (either manually or
through web services).

In the last case, the users include the astronomical event 
message producers, who will want to issue their alerts 
with their best-estimate for the astronomical classification 
of their event.  The classification will be generated 
through the application of machine learning algorithms to 
the networked data accessible via the VO, in order to 
arrive at a prioritized list of classes, ordered by 
probability of certainty.



3.2. Collaborative Annotation of Classes

Machine learning and data mining algorithms, when 
applied to very large data streams, can generate the
classification labels (tags) autonomously.  Generally, 
scientists do not want to leave this decision-making to 
machine intelligence alone – they prefer to have human 
intelligence in the loop also.  When humans and machines 
work together to produce the best possible classification 
label(s), this is collaborative annotation. Collaborative 
annotation is a form of Human Computation [18].  Human 
Computation refers to the application of human 
intelligence to solve complex difficult problems that 
cannot be solved by computers alone.  Humans can see 
patterns and semantics (context, content, and 
relationships) more quickly, accurately, and meaningfully 
than machines.  Human Computation therefore applies to 
the problem of annotating, labeling, and classifying 
voluminous data streams.  Of course, the application of 
autonomous machine intelligence (data mining and 
machine learning) to the annotation, labeling, and 
classification of data granules is also valid and 
efficacious.  The combination of both human and machine 
intelligence is critical to the success of AstroDAS as a 
classification broker for enormous data-intensive 
astronomy sky survey projects, such as LSST.  Figure 1 
highlights the main components of AstroDAS.
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data sharing
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Figure 1. Main components of AstroDAS.

4. A Research Agenda

We identify some of the key research activities that 
must be addressed, in order to promote the development 
of a machine learning-based classification broker for 
petascale mining of large-scale astronomy sky survey 
databases.  Many of these research activities are already 
being pursued by other data mining and computational 
science researchers – we hope to take advantage of all 

such developments, many of which are enabled through 
advanced next-generation data mining and cyber-
infrastructure research:
 Before the classification labels can be useful, we must 

reach community consensus on the correct set of 
semantic ontological, taxonomical, and classification 
terms.  There are ontologies under development in 
astronomy already – their completeness, utility, and 
usability need to be researched.

 Research into user requirements and scientific use 
cases will be required in order that we design, develop, 
and deploy the correct user-oriented petascale data 
mining system.

 A complete set of classification rules must be 
researched and derived for all possible astronomical 
events and objects.  For objects and events that are 
currently unknown, we need to identify robust outlier 
and novelty detection rules and classifiers. These need 
to be researched and tested.

 We need to research and collect comprehensive sets of 
training examples for the numerous classes that we 
hope to classify.  With these samples, the classification 
broker will be trained and validated.

 Algorithms for web services-based (perhaps grid-based 
or peer-to-peer) classification and mining of 
distributed data must be researched, developed, and 
validated.  These mining algorithms should include 
text mining as well as numeric data mining, perhaps an 
integrated text-numeric data mining approach will be 
most effective and thus needs to be researched.

 User interface and interaction models will need to be 
researched through prototypes and demonstrations of 
the classification broker.

 Research into the robust integration of the many 
system components identified in Figure 1 will be 
needed.  This will require investigation of different 
modes of interaction and integration, such as grids, 
web services, RSS feeds, ontologies (expressed in
RDF or OWL), linked databases, etc.

 Deploy a working classification broker on a live 
astronomical event message stream, to research its 
functionality, usefulness, bottlenecks, failure modes, 
security, robustness, etc. Fortunately, there are such 
event message feeds available today, though on a much 
smaller scale than that anticipated from LSST.

Clearly, this is an ambitious research agenda.  It will not 
be fully accomplished in just a year or two.  It will require 
several years of research and development.  This is 
fortunate, since the most dramatic need for the 
classification broker system for astronomy will come with 
the start-up of LSST sky survey operations in 2014, 
lasting ten years (until 2024).  So, we have a few years to 
get it right, and we will need all of those years to complete 
the challenging research program described above.



5. Summary: Astroinformatics

Finally, we close with discussions of BioDAS (the 
inspiration behind AstroDAS) and of the relevance of 
informatics (e.g., Bioinformatics and Astroinformatics) to 
the classification broker described in this paper.  
Informatics is the discipline of organizing, accessing, 
mining, analyzing, and visualizing data for scientific 
discovery.  Another definition says “informatics is the set 
of methods and applications for integration of large 
datasets across spatial and temporal scales to support 
decision-making, involving computer modeling of natural 
systems, heterogeneous data structures, and data-model 
integration as a framework for decision-making” [19]. 

Massive scientific data collections impose enormous 
challenges to scientists:  how to find the most relevant 
data, how to reuse those data, how to the mine data and 
discover new knowledge in large databases, and how to 
represent the newly discovered knowledge. The 
bioinformatics research community is already solving 
these problems with BioDAS (Biology Distributed 
Annotation System) [14]. The DAS provides a distributed 
system for researchers anywhere to annotate (mark-up) 
their own knowledge (tagged information) about specific 
gene sequences. Any other researcher anywhere can find 
this annotation information quickly for any gene sequence. 
Similarly, astronomers can annotate individual 
astronomical objects with their own discoveries. These 
annotations can be applied to observational data/metadata 
within distributed digital data collections. The annotations 
provide mined knowledge, class labels, provenance, and 
semantic (scientifically meaningful) information about the 
experiment, the experimenter, the object being studied 
(astronomical object in our case, or gene sequence in the 
case of the bioinformatics research community), the 
properties of that object, new features or functions 
discovered about that object, its classification, its 
connectiveness to other objects, and so on. 

Bioinformatics (for biologists) and Astroinformatics 
(for astronomers) provide frameworks for the curation, 
discovery, access, interoperability, integration, mining, 
classification, and understanding of digital repositories 
through (human plus machine) semantic annotation of 
data, information, and knowledge. We are focusing on 
further development of Astroinformatics as: (1) a new 
subdiscipline of astronomical research (similar to the role 
of bioinformatics and geoinformatics as stand-alone 
subdisciplines in biological and geoscience research and 
education, respectively); and (2) the new paradigm for 
data-intensive astronomy research and education, which 
focuses on existing cyberinfrastructure (such as the 
National Virtual Observatory).  This integrated research 
and education activity matches well to the objectives of 
the new NSF CDI (Cyber-enabled Discovery and 

Innovation) initiative [20] and the new CODATA 
ADMIRE (Advanced Data Methods and Information 
technologies for Research and Education) initiative [21].
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