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Abstract

This paper presents new algorithms (Fuzzy c-Medoids or FCMdd and Robust Fuzzy c-Medoids or RFCMdd) for
fuzzy clustering of relational data. The objective functions are based on selecting c representative objects (medoids)
from the data set in such a way that the total fuzzy dissimilarity within each cluster is minimized. A comparison of
FCMdd with the well-known Relational Fuzzy c-Means algorithm (RFCM) shows that FCMdd is more eÆcient. We
present several applications of these algorithms to Web mining, including Web document clustering, snippet clustering,
and Web access log analysis.
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I. Introduction

The evolution of the Internet into the Global Information Infrastructure has lead to an explosion in

the amount of available information. The Web, then, is becoming the apocryphal vox populi. Realizing

the vision of distributed knowledge access in this scenario and its future evolution will need tools to

\personalize" the information space. If one were to look at the Web as a distributed, heterogeneous

information base, Web personalization amounts to creating a system which responds to user queries

based on information about him/her. As a trivial example, a biologist querying on cricket in all
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likelihood wants something other than a sports enthusiast would. The explosion of the Web has

brought the personalization problem front and center, not just because of the amount of time wasted

in searching for information, but because of the massive traÆc surge this has generated in the Internet

backbone.

Personalization can either be done via information brokers (e.g. Web search engines), or in an

end-to-end manner by making Web sites adaptive. The latter solution is further attractive since it

also cuts down on network traÆc. Initial work in this area has basically focused on creating broker

entities, often called recommender systems. One of the earliest such systems was the Fire
y system [47]

which attempted to provide CDs that best match a user's professed interests based on \collaborative

�ltering". In collaborative �ltering, each user is modeled by the items that he or she expresses interest

in. However, the \characteristics" of the items are not taken into account. This is unlike the so-called

\content-based" approaches (see articles in [13]). The advantage of this approach is that learning is

unsupervised, i.e., no labeled data is required. More recently, systems such as PHOAKS [50] and our

ownW 3IQ[25], [24] have sought to use cooperative information retrieval techniques for personalization.

End{to{End personalization is predicated on adaptive Web sites[39], [38], which change the infor-

mation returned in response to a user request based on the user. Very primitive forms of this can be

seen in sites that ask the users to provide some basic information such as address, phone number, and

keywords indicating interest, and then tailor their information content (and especially ads) based on

zip code, area code, demographic pro�le, etc. However, in general the appearance of a particular page,

including links on it, can also be changed when Web sites are adaptive. For example, Etzioniet al.[39]

de�ne operations such as promotions/demotions, highlighting and linking that could be done on static

pages to create content tailored for a speci�c user dynamically. While interesting, their formalism

seems to demand a robust clustering technique in order to work successfully. Moreover, factors they

propose such as correlations between two pages are inherently fuzzy and best tackled using a fuzzy

approach. Perhaps the earliest work along similar lines was the Webwatcher project at CMU[2], [22],

which uses a type of reinforcement learning. It highlights hyperlinks in a page based on the declared

interests and the path traversal pattern of a user as well as the path traversal patterns of previous

users with similar interests. However, the underlying learning algorithms are not robust in terms

of being able to handle bad data, which can pose a signi�cant problem. As the authors themselves
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observe, several users end up traversing paths that do not correspond to their stated interests, which

can generate a signi�cant number of bad data points and outliers. Also, the users are presented with

a binary choice in terms of expressing their interest using keywords, and there is no notion of degree

of interest.

In other more active schemes that use supervised learning[37], the users are asked to explicitly rate

pages, and these ratings (encryption) are stored or their viewing time is monitored [37]. Supervised

learning, should be avoided if possible, since most users are reluctant to label data and provide explicit

feedback. A somewhat similar approach is taken in the Avanti project [14]. It uses an initial interview

to gather user interests, as well as possibly classify them into known stereotype users. Another approach

to observing path traversal and clustering based on that data is advanced by Shahabi et al. [7]. The

basic approach there is to de�ne a path similarity measure for a given Web site. Then, the logged

data about user's paths is clustered using a simple K-means algorithm to aggregate users into groups.

However, it is not clear how the similarity metric is devised, and whether it can produce meaningful

clusters. There is also a recent body of work [3], [36] which seeks to transform the Web into a more

structured, database-like entity. In particular, Han et al. [36] create a MOLAP-based warehouse from

Web logs, and allow users to perform analytic queries. They also seek to discover time dependent

patterns in the access logs [53]. Similar approaches, essentially based on the association rule ideas

[1], have been proposed in [9], [10]. However, both these approaches assume that logs contain user

ids, which is not true in the real world except in the rare case that the ident protocol is used and

the clients are willing to release the user names. A related topic is that has been recently gaining

momentum is the idea that we can learn much about users and customers by tracking and analyzing

their clickstreams, which is of great importance in e-commerce.

An important component of personalization is Web Mining. Web Mining can be viewed as the

extraction of structure from unlabeled, semi-structured data containing the characteristics of users or

information. The logs kept by Web servers provide a classic example of such data. Web mining can

be viewed as a special case of the more general problem of knowledge discovery in databases [1]. It

can be said to have three operations of particular interest: clustering (e.g. �nding natural groupings

of users, pages etc.), associations (e.g. which URLs tend to be requested together), and sequential

analysis (the order in which URLs tend to be accessed). The �rst two form the focus of our ongoing
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work. However, Web mining in general, and site analysis in particular, may well turn out to be a


op unless proper attention is paid to formalizing the goals, analysis, and evaluation methods. In this

paper, we describe some of the challenges of Web mining, and point out where a fuzzy approach might

be useful. We present new low-complexity fuzzy relational clustering algorithms and their application

to the analysis of Web access logs for extration of user pro�les. These pro�les can then be used to

make a site adaptive.

The rest of the paper is organized as follows. In Section II we point out the role of fuzzy granularity

in Web minging. In Section III, we present an overview of relational clustering algorithms. In Section

IV we introduce the Fuzzy C Medoids (FCMdd) algorithm as well as a low-complexity version of

it. In Section V, we describe a robust version of FCMdd that can handle outliers in the data. In

Section VI , we discuss how Web objects can be represented and dissimilarities between them can be

measured. In Section VIII , we present experimental results that involve the application of FCMdd

and its variations for clustering Web documents and snippets, and for mining access logs. Finally, in

Section IX we present the conclusions.

II. The Role of Fuzzy Granularity in Web Mining

The process of identifying structure in an unlabeled data set in terms of categories or components

plays a central role in Web mining. Consider for example the problem of determining categories of

users with \similar" interests, or the problem of grouping together a set of pages with similar content,

and so on. Like Data mining, Web mining needs to deal with problems of scale (extremely large

data sets). However, there are several new challenges that are raised by Web mining that make the

straightforward use of data mining techniques not particularly useful. For one, the categories and

associations in Web mining do not have crisp boundaries. They overlap considerably and are best

described by fuzzy sets. In addition, bad exemplars (outliers) and incomplete data can easily occur

in the data set, due to a wide variety of reasons inherent to Web browsing and logging. Thus, Web

Mining requires modeling of an unknown number of overlapping sets in the presence of signi�cant noise

and outliers. For example, users' access patterns are not entirely �xed. While a user may mostly visit

the CNN site to get �nancial information, she may also go there for sports- or politics-related news

as well. So while there are trends there to be discovered regarding this users behaviour in CNN Web
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server's logs, they are buried in data with signi�cant noise components. Therefore, robust methods,

that can deal with signi�cant amounts of noise, are needed.

A major problem in personalization is the lack of data. To achieve e�ective personalization, we

need to combine demographic data, psychographic data, as well as user access patterns and interests.

This leads to a feature space of an extremely high dimensionality. However, this type of data is hard

to collect for a large number of customers. In other words, in practice the number of data points we

can collect can be small in relation to the number of features. Predictive models (including statistical

tools) cannot produce reliable results unless the data represents a signi�cant percentage of the total

number of possible (traversal) patterns, which is astronomically large. Thus, methods for reducing the

dimensionality of the problem are required. Also, Web objects (pages, URLs, etc.) are non numeric in

nature, making \distance" measurements and \equality" judgements between them, a prerequisite to

grouping of any kind, an issue in itself. Hence, algorithms that can also deal with non-numeric data

are desirable. Data mining techniques have been typically developed for structured domains where

these issues are not signi�cant. Thefore, blindly dumping Web object data into a data mining tool is

not expected to yield good results. Our approach to this problem is to simplify it by categorizing the

user space as well as the document space by applying low-complexity robust relational fuzzy clustering

techniques to generate reliable \fuzzy granules". By manipulating the granules rather than the original

high-dimensional data, we can increase the reliability of the results.

To summarize, in order for a categorization technique to be useful in an application such as Web

mining, it needs to satisfy �ve basic requirements: (i) The technique should be able to handle overlap-

ping components. (ii) It needs to be robust. (iii) It needs to be able to handle relational data, since in

many instances Web objects cannot be represented by numerical vectors. (iv) It needs to be scalable

to extremely large high-dimensional data sets. (v) Finally, the technique should be able to determine

the appropriate number of components automatically, since a priori knowledge about the number of

components is rarely available. By robustness, we mean that the categorization process (and hence

the performance of a system) should not be a�ected drastically due to outliers (bad observations),

provided there is enough \good" data to support the assumed model. Robustness issues have been

discussed in detail in [11]. Scalability is an issue that has often been ignored, but that is quite critical

to these applications. For example, the Web server at CSEE department of UMBC experiences thirty
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to forty thousand hits per day. Popular sites such as news (CNN, New York Times) or search engines

get an order or two of magnitude greater number of hits. While the algorithm we propose helps with

scalability (since it is of linear complexity), we feel that greater improvements are possible.

III. Relational Clustering

The term \relational data" refers to the situation where we have only numerical values representing

the degrees to which pairs of objects in the data set are related. In contrast, \object data" refers to

the the situation where the objects to be clustered are represented by vectors xi 2 <p. Algorithms

that generate partitions of relational data are usually referred to as relational (or sometimes pair-

wise) clustering algorithms. Relational clustering is more general in the sense that it is applicable

to situations in which the objects to be clustered cannot be represented by numerical features. For

example, we can use relational clustering algorithms to cluster URLs (Universal Resource Locators)

if we can de�ne a dissimilarity measure to quantify the degree of resemblance between pairs of URLs.

The pair-wise dissimilarities are usually stored in the form of a matrix called the dissimilarity matrix.

There are several well-known relational clustering algorithms in the literature. One of the most

popular is the SAHN (Sequential Agglomerative Hierarchical Non-overlapping) model [48] which is a

bottom-up approach that generates crisp clusters by sequentially merging pairs of clusters that are

closest to each other in each step. Depending on how \closeness" between clusters is de�ned, the SAHN

model gives rise to single, complete and average linkage algorithms. A variation of this algorithm can

be found in [17]. Another well-known relational clustering algorithm is PAM (Partitioning Around

Medoids) due to Kaufman and Rousseeuw [27]. This algorithm is based on �nding k representative

objects (also known as medoids [26]) from the data set in such a way that the sum of the within

cluster dissimilarities is minimized. A modi�ed version of PAM called CLARA (Clustering LARge

Applications) to handle large data sets was also proposed by Kaufman and Rousseeuw [27]. Ng and

Han [35] propose another variation of CLARA called CLARANS. This algorithm tries to make the

search for the k representative objects (medoids) more eÆcient by considering candidate sets of k

medoids in the neighborhood of the current set of k medoids. However, CLARANS is not designed for

relational data. Finally, it is also interesting to note that Fu [15] suggested a technique very similar to

the k medoid technique in the context of clustering string patterns generated by grammars in syntactic

6



pattern recognition. Some of the more recent algorithms for relational clustering include [16], [40], [49],

and [4].

SAHN, PAM, CLARA and CLARANS generate crisp clusters. When the clusters are not well de�ned

(i.e., when they overlap) we may desire fuzzy clusters. Two of the early fuzzy relational clustering

algorithms are the ones due to Ruspini [44] and Diday [12]. Other notable algorithms include Roubens'

Fuzzy Non Metric Model or FNM [41], Windham's Association Prototype Model or AP [52], Hathaway

& Bezdek's Relational Fuzzy c-Means or RFCM [20], and Kaufman & Rousseeuw's Fuzzy Analysis or

FANNY [27]. FANNY is in fact very closely related to RFCM, and is essentially equivalent to RFCM

when the fuzzi�er, m, is equal to 2. In our experience, RFCM and FANNY are the most reliable.

Some improvements on this algorithm can also be found in the literature. For example, the NERFCM

model [19] extends RFCM to ease the restrictions that RFCM imposes on the dissimilarity matrix.

More recently, Sen and Dav�e [46] have generalized this approach further, including an extension to

handle data sets containing noise and outliers.

One problem with RFCM is that its computational complexity is O(n2). Thus, it is unsuitable for

Web mining applications where n is extremely large. In this paper, we present an objective function for

fuzzy relational clustering based on the idea of identifying k medoids, and propose a heuristic algorithm

to minimize it. We call this algorithm Fuzzy c-Medoids and abbreviate it as FCMdd rather than FCM.

(FCM is usually associated with the Fuzzy C Means algorithm in the fuzzy clustering community).

We show that even though the worst case complexity of FCMdd is O(n2), it can be made linear in

practice. We also propose a robust version of this alrorithm which has a complexity of O(nlogn). In

the next section, we de�ne the objective functions for FCMdd and present its low-complexity version.

In Section V, we present objective functions for robust versions of FCMdd.

IV. The Fuzzy c Medoids Algorithm (FCMdd)

Let X = fxiji = 1; 2; : : : ; ng be a set of n objects. Each object may or may not be represented

by a feature vector. Let r(xi;xj) denote the dissimilarity between object xi and object xj. Let

V = fv1;v2; : : : ;vcg;vi 2 X represent a subset of X with cardinality c, i.e., V is a c-subset of X. Let
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Xc represent the set of all c-subsets V of X. The Fuzzy Medoids Algorithm (FCMdd) minimizes:

Jm(V;X) =
nX
j=1

cX
i=1

umij r(xj;vi); (1)

where the minimization is performed over allV inXc. In (1), uij represents the fuzzy [6], or possibilistic

[29], [18] membership of xj in cluster i. The membership uij can be de�ned heuristically in many

di�erent ways. For example, we can use the FCM [6] membership model given by:

uij =

�
1

r(xj ;vi)

�1=(m�1)

Pc
k=1

�
1

r(xj ;vk)

�1=(m�1)
; (2)

where m 2 [1;1) is the \fuzzi�er". Another possibility is [5]:

umij =
expf��r(xj;vi)gPc
k=1 expf��r(xj;vk)g

: (3)

Above equations generate a fuzzy partition of X in the sense that the sum of the memberships of an

object xj across classes is equal to 1. If we desire possibilistic memberships [29], we could use functions

of the following type [30]:

uij =

�
1 +

r(xj;vk)

�i

��1

(4)

or

uij = exp

�
�
r(xj;vi)

�i

�
: (5)

The parameters � in (3) and � (4) are \scale" parameters that re
ect the size of the clusters. In (4)

the scale is di�erent for each cluster. This parameter needs to be speci�ed or estimated from the data.

This parameter plays an important role in determining cluster boundaries and ignoring outliers [11].

Since uij is a function of the dissimilarities r(xj;vk), it can be eliminated from (1). This is the

reason Jm is shown as a function of V alone. When (1) is minimized, the V corresponding to the

solution generates a fuzzy or possibilistic partition via an equation such as (2). However, (1) cannot

be minimized via the alternating optimization technique, because the necessary conditions cannot be

derived by di�erentiating it with respect to the medoids. (Note that the solution space is discrete.)

Thus, strictly speaking, an exhaustive search over Xc needs to be used. However, following Fu's [15]

heuristic algorithm for a crisp version of (1), we describe the following fuzzy algorithm (FCMdd) that

minimizes (1). In this version, we assume that the memberships are given by (2).
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The Fuzzy c-Medoids Algorithm (FCMdd)

Fix the number of clusters c; Set iter = 0;
Pick initial medoids V = fv1;v2; : : : ;vcg from Xc;
Repeat

Compute memberships uij for i = 1; 2; : : : ; c and
j = 1; 2; : : : ; n, by using (2); (A)

Store the current medoids: Vold = V;
Compute the new medoids vi for i = 1; 2; : : : ; c:

q = argmin
1�k�n

Pn
j=1 u

m
ij r(xk;xj); vi = xq; (B)

iter = iter + 1;
Until

�
Vold = V or iter =MAX ITER

�
.

The crisp version of FCMdd above, which we call the Hard c Medoids (HcMdd) algorithm, can be

obtained by replacing step (A) with:

q = argmin
1�k�c

r(xj;vk); uij =

�
1 if i = q
0 otherwise

(6)

The above algorithm falls in the category of Alternating Cluster Estimation [43] paradigm, and

is not guaranteed to �nd the global minimum. It is advisable to try many random initializations to

increase the reliability of the results. We have experimented with three di�erent ways of initializing

the medoids. The �rst way is to pick all the medoid candidates randomly. We call this method

Initialization I. The second way is to pick the �rst candidate as the object that is most central to the

data set, and then pick each successive one by one in such a way that each one is most dissimilar to

all the medoids that have already been picked. This makes the initial medoids evenly distributed. We

refer to this procedure as Initialization II.

Initialization II for FCMdd

Fix the number of medoids c > 1;
Compute the �rst medoid:

q = argmin
1�j�n

Pn
i=1 r(xj;xi); v1 = xq;

Set V = fv1g, iter = 1;
Repeat

iter = iter + 1;
q = argmax

1�i�n;xi =2V

min
1�k�jV j

r(vk;xi); viter = xq;

V = V [ fviterg;
Until (iter = c).
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For a given data set, the initialization produced by Initialization II is always �xed. Sometimes a bit of

randomness might be desirable. In the third initialization strategy, we add randomness by picking the

�rst medoid candidate randomly. The rest of the medoids are selected the same way as in Initialization

II. We call this method Initialization III. The computational complexity of Initialization I, II and III

are O(c), O(nc2) and O(nc2) respectively. We found that both Initialization II and III work well in

practice.

The fuzzi�er m in FCMdd determines the degree of fuzziness of the resulting clusters. Since the

medoid always has a membership of 1 in the cluster, raising its membership to the power m has no

e�ect. Thus, when m is high, the mobility of the medoids from iteration to iteration may be lost,

because all memberships become very small except the one corresponding to the current medoid. For

this reason, we recommend a value between 1 and 1:5 for m.

It can be seen from step (B) of FCMdd that the complexity of the algorithm is O(n2), where n

is the number of input objects. However, this is too expensive for most Web mining applications.

To overcome this problem, we can modify step (B) of FCMdd so that it examines only a subset of

objects while updating the medoid for cluster i. The subset we choose is the set of p objects in X

that correspond to the top p highest membership values in cluster i. We denote this subset by X(p)i.

The subsets X(p)i, i = 1; 2; : : : ; c, can be identi�ed during the membership updating step, i.e., in step

(A) of the algorithm. This increases the complexity of step (A) to O(ncp). However, the complexity

of step (B) is reduced to O(ncp). Therefore, the overall complexity is linear in the number of objects.

The value of p should be proportional to the dimensionality d of the data, e.g. 2d. However, when the

data is relational, d has no meaning. In such cases, p could be chosen to be much smaller than the

average number (n=c) of points in a cluster. The modi�ed FCMdd algorithm is summarized below.
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Linearized Fuzzy c-Medoids Algorithm (LFCMdd)

Fix the number of clusters c; Set iter = 0;
Pick the initial set of medoids V = fv1;v2; : : : ;vcg from Xc;
Repeat

Compute memberships uij for i = 1; 2; : : : ; c, and j = 1; 2; : : : ; n,
by using (2) and identify X(p)i, i = 1; 2; : : : ; c. (A)

Store the current medoids: Vold = V;
Compute the new medoids vi for i = 1; 2; : : : ; c:

q = argmin
xk2X(p)i

Pn
j=1 u

m
ij r(xk;xj) vi = xq; (B)

iter = iter + 1;
Until

�
Vold = V or iter =MAX ITER

�
.

V. Robust Versions of FCMdd

It is well-known that algorithms that minimize a Least-Squares type objective function are not robust

[42], [11]. In other words, a single outlier object could lead to a very unintuitive clustering result. To

overcome this problem, we design an objective function for a robust version of FCMdd based on

the Least Trimmed Squares idea [42], [28], we use the membership function in (2). Substituting the

expression for uij in (2) into (1), we obtain:

Jm(V;X) =
nX
j=1

 
cX

i=1

(r(xj;vi))
1=(1�m)

!1�m

=
nX
j=1

hj; (7)

where

hj =

 
cX

i=1

(r(xj;vi))
1=(1�m)

!1�m

(8)

is 1=c times the harmonic mean of the dissimilarities fr(xj;vi)) : i = 1; 2; : : : ; cg when m = 2. The

objective function for the Robust Fuzzy c Medoids (RFCMdd) algorithm is obtained by modifying (7)

as follows:

JTm(V;X) =
sX

k=1

hk:n: (9)

In (9), hk:n represents the k-th item when hj; j = 1; 2; : : : ; n, are arranged in ascending order, and

s < n. The value of s is chosen depending on how many objects we would like to disregard in the

clustering process. This allows the clustering algorithm to ignore outlier objects while minimizing the

objective function. For example, when s = n=2, 50% of the objects are not considered in the clustering

process, and the objective function is minimized when we pick c medoids in such a way that the sum
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of the harmonic-mean dissimilarities of 50% of the objects is as small as possible. We can design the

following heuristic algorithm to minimize (9).

The Robust Fuzzy c Medoids Algorithm (RFCMdd)

Fix the number of clusters c, and the fuzzi�er m;
Pick the initial medoids V = fv1;v2; : : : ;vcg from Xc;
iter = 0;
Repeat

Compute harmonic dissimilarities hj for j = 1; 2; : : : ; n, using (8);
Sort hj, j = 1; 2; : : : ; n to create hj:n;
Keep the s objects x1:n; : : : ;xs:n, corresponding to the �rst s hj:n;
Compute memberships uij:n for i = 1; 2; : : : ; c and j : n = 1; 2; : : : ; s,

by using (2), and identify X(p)i, i = 1; 2; : : : ; c;
Store the current medoids: Vold = V;
Compute the new medoids vi for i = 1; 2; : : : ; c:

q = argmin
xk:n2X(p)i

Ps
j=1 u

m
ij:n r(xk:n;xj:n); vi = xq;

iter = iter + 1;
Until

�
Vold = V or iter =MAX ITER

�
.

As mentioned above, the choice of the retention ratio, s=n, should re
ect the percentage of noise

in the data. If the noise proportion is higher than 50%, we cannot guarantee that we will obtain

the correct estimates for the parameters such as cluster center, variance, etc [11], [42]. A common

approach in robust statistics is to assume that the noise proportion is 50% and then apply a correction

to the estimate after the parameters have been (robustly) estimated [42]. For a known distribution

(such as a Gaussian), the correction is given by a simple formula. In our application, since the data is

relational, such corrections can be diÆcult to apply, except in a heuristic manner. Another option is

to estimate the retention ratio when it is not known in advance. When estimation is not possible, our

recommendation is that we estimate or pick a lowerbound for retention ratio and use it. This will at

least ensure that the estimates are not a�ected by outliers. It is also possible to optimize the objective

function with respect to the retension ratio. See for example [33], [34]. We have made appropriate

changes to the manuscript.

Interestingly, the worst-case complexity of RFCMdd algorithm still remains O(nlogn). This is a

good result, considering that robust algorithms are very expensive. It is quite trivial to design a

robust version based on the Least Median of Squares idea as well [32]. In this case we simply replace
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the summation in (9) by the median. In other words, we use

JMm (V;X) = median
1�k�n

hk:n: (10)

VI. Representing Web Objects and Measuring Dissimilarity

A. Web Documents and Snippets

We represent Web documents and snippets by feature vectors. The procedure we used to generate

the feature vectors is as follows. We �rst use a \stop-word elimination and stemming" algorithm

obtained from Louisiana State University [8] to �lter out insigni�cant words and remove certain types

of word-endings, e.g., \ing" and \ed". We then select 500 keywords out of the collection by using

the Inverted Document Frequency (IDF) method [23], [45]. The IDF method takes into account both

the frequency of a given keyword and the information about its distribution in the whole document

collection. The IDF value for a given keyword is computed as follows:

fIDF =
fw

fw max
log

�
P

Pw

�
: (11)

In (11) fw is the frequency of occurrence of the keyword in the document collection, fw max is the

maximum frequency of occurrence of any keyword in the document collection, Pw is the number of

documents that include this keyword and P is the number of documents in the whole collection. The

IDF value of a keyword measures its \importance". We sort the keywords by their IDF values and

select the 500 keywords with the largest IDF values. These keywords are denoted by K1; K2; : : : ; K500.

We then represent the i-th document by a feature vector ki = [ki1; : : : ; kid], where kik is the normalized

frequency of the the k-th keyword Kk in the i-th document. The normalization is done with respect to

the total number of keywords in this document. Thus, we generate a 500-dimensional feature vector for

each document. To reduce the dimensionality, we apply principal component analysis (PCA) [51] and

select the eigenvectors corresponding to the top 10 eigenvalues as the new features. We project each

500-dimensional vector ki representing a document onto the 10 eigenvectors to form a 10-dimensional

feature vector k0i. We perform the clustering on the dissimilarity matrix generated from these 10-

dimensional vectors. However, in the case of snippets, since the text is very short, the dimensionality

reduction step did not give good results. Therefore we used the original d-dimensional vecotors directly

in computing dissimilarities.
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In addition to the traditional Minkowski norms, we can also compute the dissimilarity between two

snippets k1 and k2 using the Jaccard Index [21] dissimilarity measure given by:

dJ(k1;k2) =

Pd
i=1min(k1i; k2i)Pd
i=1max(k1i; k2i)

; (12)

or the more traditional cosine measure given by:

dc(k1;k2) =
kT1 k2

k k1 kk k2 k
: (13)

B. Web Sessions

In this section, we de�ne the notion of a \user session" as being a temporally compact sequence of

Web accesses by a user. We also de�ne a new dissimilarity measure between two Web sessions that

captures the organization of a Web site. The goal of this particular Web mining application is to

categorize these sessions so that we can extract typical session pro�les.

Each access log entry consists of: (i) user's IP address, (ii) access time, (iii) request method

(\GET", \POST", � � � , etc), (iv) URL of the page accessed, (v) data transmission protocol (typi-

cally HTTP/1.0), (vi) return code, and (vii) number of bytes transmitted. First, we �lter out log

entries that are not germane for our task. These include entries that: (i) result in any error (indicated

by the error code), (ii) use a request method other than \GET", or (iii) record accesses to image �les

(.gif, .jpeg, , � � � , etc.), which are embedded in other pages. Next, analogous to [10], the individual

log entries are grouped into user sessions. Since Web servers do not typically log user names (unless

ident is used), we de�ne a user session as accesses from the same IP address such that the duration

of elapsed time between two consecutive accesses in the session is within a prespeci�ed threshold. In

our experiments, we used 45 min as the threshold. Each URL in the site is assigned a unique number

j 2 f1; 2; : : : ; NUg, where NU is the total number of valid URLs. The ith user session is encoded as an

NU -dimensional binary vector s(i) with the property

s
(i)
j =

�
1 if user accessed jth URL during ith session
0 otherwise

Our scheme will map one user's multiple sessions to multiple user sessions. This notion of multiple

user sessions enable us to better capture the situation when the same user displays a few (di�erent)

access patterns on this site.
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C. De�ning Dissimilarity between Two Sessions

A simple measure of similarity between sessions s(k) and s(l) is given by:

S1;kl =

PNu
i=1 s

(k)
i s

(l)
iqPNu

i=1 s
(k)
i

qPNu
i=1 s

(l)
i

(14)

Note that the above measure is essentially the cosine measure, since the si's are binary. The problem

with this similarity measure is that it completely ignores the hierarchical organization of the Web site.

For example, the session pair f/courses/cecs345g and f/courses/cecs343g, as well as the session pair

f/courses/cecs345g and f/research/grantsg will receive a zero similarity score according to S1. This

leads us to de�ne an alternative similarity measure that takes into account the syntactic representation

of two URLs as follows.

Su(i; j) = min

�
1;

j(pi \ pjj

max(1;max(jpij ; jpjj)� 1)

�
; (15)

where pi denotes the path traversed from the root node to the node corresponding to the ith URL, and

jpij indicates the length of this path or the number of edges included in the path. Now the similarity

on the session level, which incorporates the syntactic URL similarities, is de�ned by correlating all the

URL attributes and their similarities in two sessions as follows:

S2;kl =

PNU

i=1

PNU

j=1 s
(k)
i s

(l)
j Su(i; j)PNU

i=1 s
(k)
i

PNU

j=1 s
(l)
j

(16)

Unlike S1, this similarity uses soft URL level similarities. When the two sessions are identical, S2;kl

simpli�es to S2;kk = 1
PNU

i=1 s
(k)
i

, which can be considerably small depending on the number of URLs

accessed. Besides identical sessions, this similarity will generally be underestimated for session pairs

who share some identical URLs while the rest of the unshared URLs have low syntactic similarity. In

general for such sessions S1;kl provides a higher and more accurate session similarity. Therefore, we

de�ne a new similarity between two sessions that takes advantage of the desirable properties of S1 and

S2 as follows:

Skl = max(S1;kl; S2;kl) (17)

For relational clustering, this similarity is mapped to the dissimilarity measure:

rs(k; l) = (1� Skl)
2 : (18)

As will be seen in Section VIII, our experiments indicate that this dissimilarity measure is reasonable.

15



VII. Interpretation of Session Clustering Results

Since both FCMdd and RFCM require that we specify the number of clusters, and this is not possible

when clustering user sessions, we used the following procedure: We cluster the sessions with a large

(overspeci�ed) number of clusters. (In our experiments, this number was 50.) We then build the

Minimum Spanning Tree (MST) [48], [31] of the relational graph generated by FCMdd. Each node in

the relational graph represents a cluster generated by FCMdd. Each edge has a weight associated with

it, which is equal to the dissimilarity between the two clusters corresponding to the two nodes that the

edge connects. (The dissimilarity measure we use is described in the next paragraph.) We then sort

the edges of the MST by the dissimilarity values, and �nd the largest \jump" between two consecutive

dissimilarities to determine a dissimilarity threshold TD. By cutting the tree at dissimilarity threshold

TD, we automatically determine the number of �nal clusters.

The distance between two fuzzy clusters Xi and Xk generated by FCMdd cannot be meaningfully

measured by computing the dissimilarity r(vi;vk) between their medoids vi and vk. We need to

somehow take in account the aÆnity between the clusters as measured by the strength and extent of

the common boundary between them. Since the membership uij of an object xj in cluster Xi depends

on the object's position with respect to the medoid ofXi relative to its position with respect to all other

medoids, it indirectly encodes the aÆnity of xj with respect to Xi. Let Ui = (ui1; : : : ; uij; : : : ; uin)

represent the fuzzy cluster Xi associated with medoid vi, where uij is the degree to which object xj

belongs to Xi. The overlap between two fuzzy clusters Ui and Uk can be measured by the Jaccard

index [21]:

jUi \ Ukj

jUi [ Ukj
; (19)

where

Ui \ Uk = (min(ui1; uk1); : : : ;min(uin; ukn));

Ui [ Uk = (max(ui1; uk1); : : : ;max(uin; ukn));

and jUjj =
nX
l=1

ujl:

(20)

We can modify the set dissimilarity r(vi;vk) between Xi and Xk by taking into account the overlap
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as follows:

r0(vi;vk) = r(vi;vk)

�
1�

jUi \ Ukj

jUi [ Ukj

�
: (21)

We use r0(vi;vk) in constructing the MST. Since we apply MST to the clustered data and not the

origianal data, it does not increase the computational complexity of the algorithm.

We interpret results of applying FCMdd or FCTMdd on the user session relational data using the

following quantitative measures: First, the user sessions are crisply assigned to the closest clusters based

on the memberships. This creates c clusters Xi =
�
s(k) 2 S j rik � rjk 8j 6= i

	
; for 1 � i � c. The

sessions in cluster Xi are then summarized in a typical session \pro�le" vector Pi = (Pi1; : : : ; PiNU )
t.

The components of Pi are URL weights that represent the \probability of access" of each URL during

the sessions of Xi as follows:

Pij = p
�
s
(k)
j = 1js

(k)
j 2 Xi

�
=

��Xij

��
jXij

; (22)

where Xij =
n
s(k) 2 Xi j s

(k)
j > 0

o
: The URL weights Pij measure the \signi�cance" or \strength" of

a given URL to the ith pro�le. Besides summarizing pro�les, the components of the pro�le vector can

be used to recognize an invalid pro�le which has no strong or frequently accessed pattern. For such a

pro�le, all the URL weights will be low.

Several classical cluster validity measures can be used to assess the goodness of the partition. The

intra-cluster or within-cluster distance represents an average of the distances between all pairs of ses-

sions within the the ith cluster, and is given by DWi =

P
s
(k)2Xi

P
s
(l)2Xi;l6=k

rkl

jXij(jXij�1)
. This is inversely related

to the compactness or goodness of a cluster. A good guideline to use when evaluating clusters based

on the intra-cluster distances is to compare these values to the total average pairwise distance of all

sessions. The latter corresponds to the intra-cluster distance if all the user sessions were assigned to

one cluster (i.e., no category information is used). Also, it is important to recall that all distances are in

[0; 1]. The inter-cluster or between-cluster distance represents an average of the distances between ses-

sions from the ith cluster and sessions from the jth cluster, and is given by DBij =

P
s
(k)2Xi

P
s
(l)2Xj ;l6=k

rkl

jXijjXj j
.

For a good partition, the inter-cluster distances should be high because they measure the separation

between clusters.
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VIII. Experimental Results

In this section, we illustrate the use of FCMdd and RFCMdd for several Web mining applications.

We also provide comparisons with the well-known RFCM algorithm. In Section VIII-A, we give

examples of Web document clustering. In Section VIII-B, we present the results of snippet clustering.

In Section VIII-C, we discuss a Web mining application that mines user pro�les from access logs.

A. Document Clustering

The �rst data set is a collection of 1042 abstracts obtained from the Cambridge Scienti�c Abstract

Web site. The abstracts correspond to 10 topics (distance education, �lament, health care, inter-

metallic, laminate, nuclear, aeronautics, plastic, trade, furnace, and recycling). There are about 100

abstracts per topic, but since the abstracts were not carefully chosen, some are outliers. In addition,

we deliberately added 20 outliers. The second data set is a collection of 59 HTML documents com-

piled by 6 students at the Colorado School of Mines. Each student was asked to collect about 10

Web pages related to 6 topics (�sh, astronomy, ray tracing, chatroom conversation, neurobiology and

sports). For both data sets, the documents were represented by a 10-D vector as explained in Section

VI-A. In the case of RFCM, the dissimilarity matrix was generated using the square of the Euclidean

distance between the vectors. In the case of FCMdd, in addition to Euclidean distance, several other

dissimilarity measures were also tried. In all cases, the nuber of clusters was speci�ed to be equal to

the number of topics.

Table I shows the results obtained for the �rst two data sets. The column with the heading FCMdd-

cos corresponds to the case when FCMdd was run with the cosine dissimilarity measure (i.e., 1�cosine

of angle between vectors), and the columns with the headings FCMdd-E, FCMdd-E2, and FCMdd-L1

correspond to the case when FCMdd was run with the Euclidean distance, squared Euclidean distance,

and L1-norm respectively. The �rst row results are the average of 20 di�erent runs of the algorithms on

the Cambridge Scienti�c Abstract data set. In each run, 120 abstracts were randomly selected from the

collection, and only these 120 abstracts were used to generate the keywords and the 10 eigenvectors.

The 500-dimensional feature vectors were constructed for all the remaining abstracts, and these feature

vectors were then projected onto the 10 eigenvectors to generate the object data for a particular run

of the algorithms. This process was repeated 20 times. The second row of the table corresponds to
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the Web-page data set.

The results show that FCMdd compares favorably with RFCM in terms of classi�cation rates, and

at the same time is an order of magnitude faster. The CPU times (in seconds) were recorded on a

Pentium II, 400 MHz processor, and do not include the time to compute the dissimilarity matrix.

B. Snippet Clustering

We also have results on a collection of snippets corresponding to Web documents that were retrieved

by a search engine [54]. However, we will present only one example due to space constraints. The

data set we used was a set of snippets corresponding to 200 Web documents retrieved by a search

engine in response to the query \salsa". To represent the snippets, we used the \stop-word elimination

and stemming" algorithm followed by the IDF method to generate d = 500 keywords (See Section

VI-A). Each snippet was then represented by a d-dimensional vector, where the i�th component

represents the (normalized) frequency of occurrence of the i�th keyword in the snippet. To compute

the dissimilarities between snippets, we used the Jaccard dissimilarity Index in (12). We also tried the

cosine measure, but the results were somewhat worse. FCMdd was applied to this data with c = 7,

and the snippets were crisply assigned to the clusters after the algorithm converged. There were three

main clusters with 151, 19, and 19 snippets. The remaining clusters had 1 to 6 snippets in them and

therefore we did not consider them as signi�cant. We computed average keyword frequencies for each

individual cluster. The top 10 most frequent keywords (along with their frequencies in parentheses)

are shown in Table II. These keywords give us a \pro�le" of the cluster. As can be seen, the �rst

cluster is mostly about hot sauces, the second one is about salsa music, and the third one is about

salsa dancing. Since FCMdd is not robust, the �rst cluster also contains many irrelevant (outlier)

snippets. Table IV shows randomly sampled snippets from each cluster. It can be seen that the last

two snippets in cluster 1 are outliers.

We applied RFCMdd to the same data with 25% trimming, and found that most of the irrelevant

snippets were identi�ed correctly as outliers by the algorithm. For example, RFCMdd eliminates the

last two snippets shown in Table IV from cluster 1. Cluster 1 now contains only 65 snippets, and the

other two clusters are unchanged. Table III summarizes the results of RFCMdd. If we compare the

pro�le vectors produced by RFCMdd with those of FCMdd, we can see that the pro�le of cluster 1 is
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signi�cantly strengthened by RFCMdd. The remaining clusters are virtually unchanged by RFCMdd,

since their already have fairly strong pro�les.

C. Mining User Pro�les from Access Logs

To validate the capacity of our algorithms to extract user access patterns, we ran several experiments

comparing FCMdd with RFCM. Both the naive and the linearized implementations of FCMdd were

used. The experiments were done on a number of Web server logs obtained from servers at the

University of Maryland - Baltimore County (UMBC). We report here a subset of our experimental

results, on log sizes that represent a quarter days activity to �ve days of activity on the UMBC CSEE

Web server. Instead of reporting the number of hits in each log, we report here the number of sessions

generated from a log since the clustering algorithm operates on the sessions.

Table V compares the performance of LFCMdd, regular FCMdd, and RFCM on the access log

data. As can be seen quite clearly, even though the theoretical complexities of RFCM and FCMdd

are the same, i.e., O(n2), FCMdd performs signi�cantly better. In the case of FCMdd, we overspecify

the number of clusters to be 50. We then apply the MST algorithm as described in section VII.

For LFCMdd, a value of 15 for p was found to give good results while still signi�cantly reducing

computation time compared to FCMdd. The same number of clusters (50) was used for RFCM as

well.

From Table V, we see that for the smaller logs, FCMdd is three to four times faster. As the log

size increases, this di�erence increases as well, becoming 20 times for the 3 day log. In fact, we do

not report any results for 4 day and 5 day logs with RFCM, since it was taking an inordinately large

amount of time. We can also see that the linearized version of FCMdd is signi�cantly faster than its

regular implementation. It is about 4-5 times faster for smaller logs, and becomes 10-12 times faster as

the log size grows. As larger logs are sought to be analyzed, this di�erence will be signi�cant. These

data establish fairly clearly that traditional approaches like RFCM are too computationally intensive

to deal with the large data sizes that are prevalent in the data mining task. They also show the

superior performance of the linearized implementation.

Tables VI and VII show the validity measures (see Section VII) computed on the clusters generated

by the algorithms. They clearly indicate that the intercluster distance for most clusters is much
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smaller than the intracluster distance, although there are a few exceptions, such as cluster 0. This

cluster represented an aggregation of all course related URLs.

Given that in the linearized implementation, we are using only a fraction of the possible medoid

candidates at each update step, one might expect that the clusters formed may not be as good the

regular implementation. At best, one would hope that we would get clusters that were no worse than

the original. Somewhat surprisingly, we found that the LFCMdd also generated better clusters than

the regular implementation for many of our logs. This can be seen both subjectively by looking at

the URLs in a clusters, and more objectively by the validity measures. Tables VI and VII show that

the average intra cluster distance was 0.343 for the linearized version as opposed to 0.435 for the

regular implementation. We speculate that this is because of the \local" nature of the search used

by the linearized version. The linearized version con�nes its search for the medoid of a cluster to the

neighborhood of the current medoid. This means that given a good initialization, this method can

�nd good \localized" clusters. The regular implementation does a more global search and sometimes

could get stuck in strange minima.

We provide brief descriptions of the clusters generated by our algorithm from the Web server logs

at www.cs.umbc.edu for the month of April, 2000. Table VIII lists the clusters found. Recall that the

clusters were generated by overspecifying the number of clusters to be 50 and then determining the

actual number cactual using the procedure described in Section VII. When the cardinality of a cluster

is too low (in our case when less than 1% of the sessions belonged to a cluster), we discard the cluster

as not having enough support. For illustration purposes, we show here the top level URLs found, and

in the table show the sum of the strengths of the underlying URLs. For instance, if a cluster has the

URL �plusquel/ with strength 0.8 and �plusquel/cmsc310 with strength 0.7, we will report it here as

�plusquel with strength 1.5.

The clusters seemed fairly consistent across logs worth several days. In other words, similar (though

not identical) clusters were formed as we mined di�erent sized logs from the same time period. In our

analysis, we chose to disregard clusters that had a very small cardinality (number of sessions in them).

In traditional data mining jargon, one would say that there was not enough support for such clusters.

We also ignored those clusters that did not have a strong URL pro�le as explained in Section VII.

� Clusters 0 (/agentslist/) and 20 (/agents/) contain user sessions that accessed the pages maintained
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by the Agents group at UMBC. Agentslist is an archived mailing list about agents, and agents page is

a well-known resource for agent information in the DAI and software agent community.

� Cluster 2 (/help/oracle/) represents user sessions that accessed the help pages of oracle8. These are

likely to be from students enrolled in the undergraduate and graduate database courses, both of which

use oracle.

� Cluster 6 (/www/) represents user sessions that accessed an older version of the CSEE Web pages.

� Cluster 8 (/stephens/) represents user sessions that accessed the home pages of a faculty member to

access information about his course in cryptology.

� Cluster 9 (/471/) represents users who want to access the CMSC 471 course pages. It contains hits

to pages containing current information, lectures and notes.

� Cluster 10 (/%7Esli2) and Clusters 16 (/�sli2/, /�sli2/cube , /�sli2/plot) correspond to users

interested in Java based computer games in a user's page.

� Clusters 11 (/cgi-bin/) represents access to the queries provided on the server using CGI scripts.

� Clusters 15 (/�plusquel/) represents users accessing the pages of a faculty member, especially course

CMSC310 and a topics course on VLSI that the faculty member teaches.

� Cluster 19 (/�ugrad) represents users who accessed Web pages that provides brochures and admission

information for undergraduates.

� Clusters 21 (/courses/) contains user sessions that access information about the courses o�ered by the

CS department. Given the enrollment di�erences, a larger support is found for /courses/undergrad/

as opposed to /courses/graduate/, as expected.

� Clusters 1 (/�thurston), 3 (/�kalpakis), 4 (/�mshadl1), 7 (/�tbogar1), 13 (/�qlu2), 17 (/�vick)

and 18 (/�mikeg) correspond to user sessions that accessed home pages of individual users.

� Clusters 5, 12, 14,and 22 have cardinalities that are too small to be included in the study.

IX. Conclusions

In this paper, we have presented new relational fuzzy clustering algorithms (FCMdd and RFCMdd)

based on the idea of medoids. The worst-case complexity of the algorithms is O(n2), which happens

while updating the medoids in each iteration. This complexity compares very favorably with other

fuzzy algorithms for relational clustering, such as RFCM. However, with minimal changes, the com-
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plexity of FCMdd will be O(ncp), and that of RFCMdd will be O(nlogn). Moreover, in our experience,

these algorithms converge very quickly, in 5 or 6 iterations. Our results show that these algorithms

are very useful in Web mining applications such as categorization of Web documents, snippets, and

user sessions.

Note that in some applications, the frequency of accesses to a Web page within the same session

may be important. In that case, the de�nition of s
(k)
j should be modi�ed to s

(k)
j = number of times the

jth URL is accessed in the kth session. In ongoing experiments, we are looking into a multi-resolution

pro�ling approach where clustering is applied recursively on the pro�les found in previous runs.
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TABLE I

Results on Abstract and Web-Page Data Sets

Data
Set

RFCM-E2 FCMdd-cos FCMdd-E FCMdd-E2 FCMdd-L1

rate (%) CPU (s) rate (%) CPU (s) rate (%) CPU (s) rate (%) CPU (s) rate (%) CPU (s)
Abstr 83.60 126.88 83.10 5.03 74.55 4.20 83.97 5.20 75.52 3.77
Web Pg 83.05 0.34 84.75 0.01 84.75 <0.01 84.75 0.01 88.14 0.01

TABLE II

FCMdd Results on Snippet Data Set

cluster kw1 kw2 kw3 kw4 kw5 kw6 kw7 kw8 kw9 kw10
1 hot

(.35)
sauc
(.23)

thi
(.21)

chile
(.19)

recip
(.15)

food
(.13)

gourmet
(.13)

garlic
(.11)

spice
(.10)

mexican
(.09)

2 music
(1.0)

danc
(.63)

dj
(.47)

latin
(.42)

onli
(.26)

todai
(.21)

lesson
(.16)

listen
(.16)

live
(.16)


oor
(.16)

3 danc
(1.4)

lesson
(.31)

look
(.32)

jeanni
(.21)

gonzalez
(.16)

jobi
(.16)

london
(.16)

lui
(.16)

oxford
(.16)

page
(.16)

TABLE III

RFCMdd Results on Snippet Data Set

cluster kw1 kw2 kw3 kw4 kw5 kw6 kw7 kw8 kw9 kw10
1 hot

(.82)
sauc
(.52)

thi
(.48)

chile
(.43)

gourmet
(.29)

garlic
(.25)

food
(.23)

recip
(.23)

pepper
(.19)

mexican
(.17)

2 music
(1.0)

danc
(.63)

dj
(.47)

latin
(.42)

onli
(.26)

todai
(.21)

lesson
(.16)

listen
(.16)

live
(.16)


oor
(.16)

3 danc
(1.4)

lesson
(.31)

look
(.32)

jeanni
(.21)

gonzalez
(.16)

jobi
(.16)

london
(.16)

lui
(.16)

oxford
(.16)

page
(.16)

TABLE IV

Sample Snippets in 3 Clusters Found by FCMdd

cluster #1

1) Vermont maple syrup, gift baskets, hot sauce, salsa, new England specialty products, gourmet foods, corporate, sweets ]. Vermont maple syrup, gift

baskets, hot sauce, salsa, new England specialty products, gourmet foods, corporate,

2) HOT SAUCE. #299 Devil's Dozen! $38.00 Click here to see a few of our hot sauces! #201 Batten Island Gourmet, Mild $2.00 closeout - only 1 left

#211 Mountain Man Fire Roasted Habanero 3:95MountainManisourbestsellinghabsauce!#212PurpleHaze3.95

3) Made with searing red savina chiles, hot habanero chiles and thai chiles makes this salsa hotter then you know where. The Paradise Pineapple Salsa

was awarded �rst place in the 1996 Fiery Foods Festival-fruit salsa division.

4) Kaari Tiistai 17.00-18.00 SALSA Alkeet Miguel 18.00-19.00 PARISALSA Alkeet Miguel 19.00-20.00 OPISKELE ESPANJAA Salsaamalla Alkeet (tunti

pidet espanjaksi) Miguel 20.00-21.00 RUEDA de CASINO & PARISALSA Jatko Miguel Keskiviikko 17.00-18.00 FLAMENCO Alkeet (sevillanas) Kaari

18.00-19.00 FLAMENCO Jatko ( tangos ) Kaari 19.00-20.00.

5) By combining a multi-faceted corporate marketing background with the latest in computer animation and presentation techniques, ROUTE 66

PRODUCTIONS, LLC has formed a division specializing in sophisticated digital media applications, called DIGITAL SALSA.

cluster #2

1) Edinburgh Latin/Hispanic Music and Dance Service: Tel-Aviv Yigal Korolevski has kindly send me a summary of what's going on in Tel-Aviv.

Wednesday - 21:00-22:00 (beginners), 22:00-24:00 Brazilian party.

2) A collection of the best music played at Tropicana famous dancing 
oor. Compositions by Ignacio Pieiro, Ernesto Lecuona, Enrique Jorrn, the father

of cha cha ch, Celina Gonzlez, Miguel Matamoros. They received the award "Disco de Oro" for their

3) DJ Jesus R. R. DJ Jesus plays all the hottest Latins tunes: salsa, cumbia, merengue, banda, quebradita, ranchera and romantica. Available to DJ

latin techno and salsa hits for any occasion. El Tigre" DJ Manny - LATIN MUSIC PRODUCTIONS. Phone: 283-4213. 3213

cluster #3

1) The instructor, Gustavo Sr. has been teaching authentic Latin dances in the Seattle area for many years, and travels often to his native Panama, to

constantly update his knowledge of the true international dance hall scene. The instructor, Gustavo Sr. has

2) What I really love, is watching great salsa dancing - I wish I could dance well but need a lot of lessons and practice (so does my novia who is

Guatemalteca). What I really love, is watching great salsa dancing - I wish I could dance well but need a lot of lessons and practice (so does my novia

who is Guatemalteca).

3) After a few lessons you'll have stepped into a whole new scene - you'll quickly make new friends, and before long you'll be dancing the nights away

at one of Viva Salsa's events or at one of the many salsa clubs in Oxfordshire, the home counties, London, New
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TABLE V

Time required by the clustering algorithms, shown as h:m:s.ms

Log Size Sessions LFCMdd FCMdd RFCM

Quarter day 1605 2:34 9:42 46:01.97
Half day 2668 10:09.11 42:41 2:06:31.34
1 day 2913 10:52.30 55:27.25 2:52:59.37
2 day 5956 14.45.74 2:34:04.32 8:39:45.24
3 day 8777 30:31.11 5:33:40.05 107:17:45.4
4 day 11074 49:22.25 9:27:02.58 {
5 day 12586 1:09:50 12:24:04 {

Cluster Intra-Cluster Distance Inter-Cluster Distance

0 0.986 0.999
1 0.137 0.994
2 0.262 0.995
4 0.025 0.999
5 0.086 1.000
6 0.365 0.998
7 0.072 0.999
8 0.080 0.999
9 0.702 0.998
10 0.481 0.993
11 0.184 0.998
12 0.090 0.996
13 0.454 0.996
14 0.542 0.995
15 0.405 0.998
16 0.284 0.992
17 0.333 0.997
18 0.400 0.993
19 0.400 0.995
20 0.204 0.998
21 0.209 0.999
22 0.858 0.984
Average 0.343 0.996

TABLE VI

Intra{ and Inter{Cluster Distance for LFCMdd generated for a Quarter Day Log
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Cluster Intra-Cluster Distance Inte-Cluster Distance

0 0.984 0.997
1 0.025 0.999
2 0.518 0.994
3 0.448 0.996
4 0.371 0.998
5 0.687 0.997
6 0.429 0.998
7 0.090 0.993
9 0.674 0.988
10 0.342 0.995
11 0.405 0.997
12 0.487 0.995
13 0.311 0.999
14 0.128 0.999
16 0.514 0.989
17 0.212 0.997
20 0.635 0.980
22 0.463 0.995
23 0.438 0.991
24 0.556 0.991
Average 0.435 0.995

TABLE VII

Intra{ and Inter{Cluster Distance for FCMdd generated for a Quarter Day Log

27



TABLE VIII

CSEE Logs Analysis using Linear FCMdd Algorithm

Cluster Cardinal URLs URLs Deg

0 - /agentslist/ 628 3864 f/agentslist/*g 1.511
f/agentslist/archive/*g 1.449

1 - /�thurston/ 11 8 f/�thurston/*g 2.999
f/�thurston/swarch.htm/*g 1.273

2 - /help/oracle8/ 41 241 f/help/*g 6.976
f/help/oracle8/*g 6.585
f/help/oracle8/server803*g 4.488
f/help/oracle8/server803/A54654 01/*g 1.098

3 - /�kalpakis/ 46 137 f/�kalpakis/*g 3.543
f/�kalpakis/Courses/*g 1.761
f/�kalpakis/Courses/441/*g 1.326

4 - /�mshadl1/ 20 12 f/�mshadl1/*g 3.2
f/�mshadl1/pro�ler.html/*g 1.7

5 1 2 /�cmcnau2/*
6 -/www/ 32 104 f/www/*g 3.156

f/www/graduate/*g 2.531
f/www/graduate/rpg/*g 1.156

7 - /�tbogar1/ 18 42 f/�tbogar1/*g 4.722
f/�tbogar1/dlance/*g 1.222

8 - /�stephens/ 27 150 f/�stephens/*g 8.444
f/�stephens/crypto/*g 7.074

9 -/471/ 60 893 f/471/*g 14.167
f/471/current/*g 5.45
f/471/current/lectures/*g 4.333
f/471/lectures/*g 5.25
f/471/lectures/uninformed-search/*g 1.05
f/471/notes/*g 3.333
f/471/notes/7/*g 1.05

10 -/%7Esli2/ 16 24 f/%7Esli2/*g 2
f/%7Esli2/cube/*g 1.938

11 -/cgi-bin/ 76 358 f/cgi-bin/*g 4.171
f/cgi-bin/raw?url=http:/*g 3.776
f/agents/*g 2.697

12 3 5 /�kjoshi/*
13 -/�qlu2/ 49 12 f/�qlu2/*g 1.837
14 6 42 /�khu1/* ,/�lxu21/*, /courses/*
15 -/�plusquel/ 12 85 f/�plusquel/*g 8.0

f/�plusquel/310/*g 3.417
f/�plusquel/310/nasm/*g 1.083
f/�plusquel/310/syllabus/*g 1.166
f/�plusquel/310/slides/*g 1.166
f/�plusquel/vlsi/*g 1.333
f/�squire/*g 2.5

16 -/�sli2/ 236 203 f/�sli2/*g 13.86
f/�sli2/cube/*g 9.932
f/�sli2/plot*g 2.085

17 -/�vick/ 9 20 f/�vick/*g 2.778
18 -/�mikeg/ 81 90 f/�mikeg/*g 3.012
19 -/�ugrad/ 25 75 f/�ugrad/*g 4.84

f/�ugrad/brochure/*g 3.92
f/�ugrad/brochure/cmpe/*g 1.76
f/�ugrad/brochure/cmsc/*g 1.52
f/courses/*g 1.52

20 -/agents/ 466 1544 f/agents/*g 3.406
21 -/courses/ 1048 3443 f/courses/*g 7.889

f/courses/undergraduate/*g 6.776
f/courses/undergraduate/201/*g 2.512

22 2 127 /%7Echang/*
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